Clinical Trials Logo

Clinical Trial Summary

Cardiac Arrest is among the leading causes of death, with survival still well under 50% and the majority of the survivors suffering from moderate to severe neurologic deficits. The human, social and economic costs are staggering.

During resuscitation, damage is mitigated if chest compressions and other medical care are optimal, allowing some blood to reach the brain and some oxygen to reach the cells. Once the heart starts beating again, which is called return of spontaneous circulation, brain perfusion is reestablished, but usually not to normal. The now damaged brain is very fragile, can be sensitive to any changes in blood pressure or metabolic abnormalities, and swelling might set in. Hypoperfusion can persist, without the clinician's knowledge. All of these events further damage the brain and diminish the odds that the patient will regain a normal life. Therefore, the hours following return to spontaneous circulation are critical to the patient's future recovery, and constitute a window of opportunity to maximize the brain ability to heal.

In order to optimize resuscitative efforts and post-arrest management, clinicians must know what is actually happening with the most vital organ, the brain. The problem is that it is very difficult to do in a comatose patient. The available technologies only reveal indirect evidence of brain suffering, like the swelling on CT-scans, but not to continuously evaluate at the bedside if the brain actually receives enough blood.

The FDA recently approved a device named the c-flow, made by ORNIM. This device looks at red blood cells in the brain and the speed at which they move to evaluate an index of cerebral perfusion. It does so with sensors put on the patient's forehead, which emit and detect ultrasounds and infrared light. This index can inform the clinician about the amount of blood flow the brain receives, and it can be put in place very quickly, even during resuscitative efforts, and without any danger for the patient.

The study looks at how well the information obtained with the c-flow matches the one obtained from other indirect indices and, more importantly, how well it predicts patient outcome. The investigators wish to establish threshold values of this index of perfusion that predict a good recovery so that this information may be used to optimize patient's neurological outcome in the near future.


Clinical Trial Description

Primary Objective:

Cardio-Pulmonary Resuscitation (CPR) is undergoing a major paradigm shift, with new emphasis on optimizing neurological recovery. As a result, Cardio-Cerebral Resuscitation (CCR) is now the preferred term for describing protocols directed at promoting survival and recovery from cardiac arrest. Establishing and maintaining brain perfusion is the critical endpoint of resuscitation; however, there is currently no simple and reliable way to evaluate the adequacy of brain tissue perfusion in cardiac arrest patients. The overall goal of the NINCA study is to determine if non-invasive cerebral blood flow index (CFI) can be used as a simple and effective measurement of brain perfusion during and after resuscitation from cardiac arrest. Our researchers hypothesize that this monitoring may one day be routinely used to (1) evaluate the adequacy of chest compressions, (2) avoid brain tissue hypoperfusion induced by excessive hyperventilation or shivering, (3) serve as an endpoint for goal-directed hemodynamic support, (4) evaluate the potential for neurological recovery, and (5) help guide post-cardiac arrest care.

Implications for Further Research:

Successful completion of the research will hopefully establish that non- invasive cerebral blood flow monitoring is feasible during and after CPR; is dependent on adequate MAP, CO, temperature, SpO2 and ventilation; and is a valid predictor of neurological recovery. If confirmed, such monitors may one day become part of standard ICU post-cardiac arrest monitoring and even be part of standard resuscitation equipment.

Determination of optimal CFI thresholds or targets will support future studies to determine if "goal directed" and individualized post-resuscitation ICU care is feasible using non-invasive cerebral perfusion indices. This could lead to a new way of optimizing hemodynamic support, temperature management and ventilation strategies to maintain adequate cerebral perfusion and improve neurological outcomes. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02575196
Study type Observational
Source Icahn School of Medicine at Mount Sinai
Contact
Status Completed
Phase N/A
Start date October 2015
Completion date March 21, 2016

See also
  Status Clinical Trial Phase
Recruiting NCT06048068 - Removing Surrogates' Uncertainty to Reduce Fear and Anxiety After Cardiac Events N/A
Recruiting NCT05558228 - Accuracy of Doppler Ultrasound Versus Manual Palpation of Pulse in Cardiac Arrest
Completed NCT03685383 - Cytokine Adsorption in Post-cardiac Arrest Syndrome in Patients Requiring Extracorporeal Cardiopulmonary Resuscitation N/A
Completed NCT04619498 - Effectiveness of an Interactive Cognitive Support Tablet App to Improve the Management of Pediatric Cardiac Arrest N/A
Completed NCT04584645 - A Digital Flu Intervention for People With Cardiovascular Conditions N/A
Not yet recruiting NCT05649891 - Checklists Resuscitation Emergency Department N/A
Withdrawn NCT02352350 - Lactate in Cardiac Arrest N/A
Completed NCT03024021 - Cerebral Oxymetry and Neurological Outcome in Therapeutic Hypothermia
Completed NCT02275234 - Care After Resuscitation
Completed NCT02247947 - Proteomics to Identify Prognostic Markers After CPR and to Estimate Neurological Outcome
Completed NCT01972087 - Simulation Training to Improve 911 Dispatcher Identification of Cardiac Arrest N/A
Completed NCT01944605 - Intestinal Ischemia as a Stimulus for Systemic Inflammatory Response After Cardiac Arrest N/A
Completed NCT01936597 - Prospective Study of 3 Phone Assistance Strategies to Achieve a Continuous Cardiac Massage N/A
Active, not recruiting NCT01239420 - Norwegian Cardio-Respiratory Arrest Study
Completed NCT00878644 - Therapeutic Hypothermia to Improve Survival After Cardiac Arrest in Pediatric Patients-THAPCA-OH [Out of Hospital] Trial Phase 3
Completed NCT01191736 - Ultra-Brief Versus Brief Hands Only CPR Video Training With and Without Psychomotor Skill Practice N/A
Completed NCT00880087 - Therapeutic Hypothermia to Improve Survival After Cardiac Arrest in Pediatric Patients-THAPCA-IH [In Hospital] Trial N/A
Completed NCT00729794 - Vasopressin, Epinephrine, and Steroids for Cardiac Arrest Phase 3
Recruiting NCT00441753 - Cerebral Bloodflow and Carbondioxide Reactivity During Mild Therapeutic Hypothermia in Patients After Cardiac Arrest N/A
Completed NCT00347477 - Fluid Shifts in Patients Treated With Therapeutic Hypothermia After Cardiac Arrest Phase 3