Clinical Trials Logo

Clinical Trial Summary

Background: Cardiac arrest is a life-threatening event. Intensivists are challenged with an increasing number of patients with uncertain neurological outcome following cardiopulmonary resuscitation (CPR). The prognostic value of current biomarkers for neurophysiologic long-term outcome is limited.

Hypothesis: We hypothesize that specific brain-derived tissue leakage proteins can be identified to reveal novel, more reliable prognostic biomarkers for good neurological outcome.

Methods: This translational study (n=100) is a combination of a prospective basic science study intended to reduce the number of potential plasma biomarker candidates by proteomic shotgun analyses in brain tissue autopsy samples and plasma samples from resuscitated patients (n=10) and a prospective clinical validation study in a large study population (n=90) by high-throughput analyses. Selection of proteomic markers and signature estimation will be performed to discriminate patients with good and poor outcome.

Clinical perspective: A structured proteomic analysis approach might identify the best marker out of all proteins liberated during cellular damage.


Clinical Trial Description

Background: Cardiac arrest is a life-threatening event. Intensivists are challenged with an increasing number of patients with uncertain neurological outcome following cardiopulmonary resuscitation (CPR). The prognostic value of current biomarkers for neurophysiologic long-term outcome is limited. Therefore, identification of novel plasma markers with higher predictive value for neurophysiological recovery is critical for patient management after CPR.

Hypothesis: We hypothesize that specific brain-derived tissue leakage proteins can be identified to reveal novel, more reliable prognostic biomarkers for good neurological outcome.

Methods: This translational study (n=100) is a combination of a prospective basic science study intended to reduce the number of potential plasma biomarker candidates by proteomic shotgun analyses in brain tissue autopsy samples and plasma samples from resuscitated patients (n=10) and a prospective clinical validation study in a large study population (n=90) by high-throughput analyses. Samples will be analyzed by proteomic shotgun analyses using the Q-Exactive quadrupole-orbitrap mass spectrometer (MS). MS/MS data will be interpreted by the MaxQuant and Perseus Software. In order to identify brain-derived proteins within plasma, the plasma proteome of 10 resuscitated patients will be compared to the proteomic profile of brain tissue. This will reduce the number of potential plasma biomarker candidates associated with neurologic outcome. The prospective validation in plasma samples will be performed by a targeted proteomics approach using selected reaction monitoring (SRM) on a triple quadrupole ion MS. Neurological outcome will be assessed by the five-point scale (death, persistent vegetative state, severe disability, moderate disability, and good recovery) according to the cerebral performance categories (CPC). A CPC sore of <3 is considered a good neurological outcome. Selection of proteomic markers and signature estimation will be performed by L1 regularized logistic regression, where the tuning parameter will be optimized by cross-validated model performance. The signature's ability to discriminate patients with good and poor outcome will be described by ROC analysis.

Clinical perspective: An accurate predictor of neurological outcome following CPR is of utmost clinical importance. However, previous studies focused on a very limited array of biomarkers. Therefore, a structured proteomic analysis approach might identify the best marker out of all proteins liberated during cellular damage. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01960699
Study type Observational [Patient Registry]
Source Medical University of Vienna
Contact
Status Completed
Phase
Start date October 2013
Completion date January 2020

See also
  Status Clinical Trial Phase
Completed NCT04114773 - Rehabilitation for Survivors of Cardiac Arrest Focused on Fatigue N/A
Completed NCT04624776 - Steroid Treatment After Resuscitated Out-of-Hospital Cardiac Arrest Phase 2
Completed NCT01719770 - Skeletal Muscle Paralysis in Hypothermic Patients After Cardiac Arrest Phase 3
Recruiting NCT05482945 - CardioPulmonary Resuscitation With Argon (CPAr) Trial N/A
Completed NCT03112486 - Out-of-hospital Cardiac Arrest (OHCA) Biomarkers
Recruiting NCT05386199 - The Role of Serotonin in Intensive Care Patients
Completed NCT03889340 - Study of Brain Cools Device in Patients Resuscitated From Cardiac Arrest
Recruiting NCT03841708 - Hemodynamic Optimization Through Pleth Variability Index for OHCA N/A
Completed NCT03908346 - A Novel Patient Decision Aid for Surrogate Decision Makers of Comatose Survivors of Cardiac Arrest N/A
Completed NCT02998749 - Gasping Improves Long-term Survival After Out-of-hospital Cardiac Arrest N/A
Withdrawn NCT05000320 - VIGAB-BIOSTAT: Neuronal Injury Panel Substudy
Recruiting NCT05090930 - Innovative Technologies for the Treatment of Pulmonary and Heart Failure N/A
Recruiting NCT05564754 - Sedation, Temperature and Pressure After Cardiac Arrest and Resuscitation N/A
Recruiting NCT06207942 - Stepcare Extended Follow-up Substudy N/A