View clinical trials related to Carcinoma, Small Cell.
Filter by:This phase Ib/II trial studies the best dose of temozolomide and how well it works with niraparib and atezolizumab in treating patients with solid tumors that have spread to other places in the body (advanced) and extensive-stage small cell lung cancer with a complete or partial response to platinum-based first-line chemotherapy. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Niraparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving temozolomide, niraparib and atezolizumab may work better in treating patients with advanced solid tumors and extensive-stage small cell lung cancer.
To evaluate the anti-tumor activity, safety and tolerance of toripalimab as monotherapy for patients with small cell esophageal cancer (SCCE), and to explore the potential biomarkers for this treatment.
This phase II/III trial studies how well chemotherapy and radiation therapy (chemoradiation) with or without atezolizumab works in treating patients with limited stage small cell lung cancer. Drugs used in chemotherapy, such as etoposide, cisplatin, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving chemoradiation with or without atezolizumab may work better in treating patients with limited stage small cell lung cancer.
This Phase 3 study aims to find out whether RRx-001 + platinum chemotherapy is more effective than platinum chemotherapy alone in 3rd line or beyond small cell cancer.
This phase II trial studies how well antiandrogen therapy, abiraterone acetate, and prednisone with or without neutron radiation therapy work in treating patients with prostate cancer. Hormone therapy such as antiandrogen therapy may fight prostate cancer by blocking the production and interfering with the action of hormones. Abiraterone acetate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as prednisone, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Neutron radiation therapy uses high energy neutrons to kill tumor cells and shrink tumors. It is not yet known whether antiandrogen therapy, abiraterone acetate, and prednisone with or without neutron radiation therapy may work better in treating patients with prostate cancer.
This phase Ib trial studies how well pembrolizumab works with combination chemotherapy in treating participants with small cell/neuroendocrine cancers of the urothelium or prostate that has spread to nearby tissue or lymph nodes or that has spread to other places in the body. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as etoposide, docetaxel, cisplatin, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving pembrolizumab with platinum-based chemotherapy may work better in treating participants with small cell/neuroendocrine cancers of the urothelium or prostate.
BACKGROUND: - Small cell lung cancer (SCLC) is an aggressive cancer with a poor prognosis. Although highly responsive to chemotherapy initially, SCLC relapses quickly and becomes refractory to treatment within a few months. - The inability to destroy residual SCLC cells despite initial chemosensitivity suggests the existence of a highly effective DNA damage response network. SCLC is also characterized by high DNA replication stress (RB1 inactivation, MYC and CCNE1 activation). - There is only one FDA approved treatment for patients with relapsed SCLC after first-line chemotherapy: topotecan, which inhibits religation of topoisomerase I-mediated single-strand DNA breaks leading to lethal double-strand DNA breaks. Temozolomide, an oral alkylating agent, which causes DNA damage by alkylating guanine at position O6 also has activity in relapsed SCLC, particularly for brain metastases. - Preliminary evidence indicates that disruption of the immune checkpoint PD-1/PD-L1 pathway can yield responses in a subset of SCLC patients, but response rates (approximately equal to 10%) are lower than NSCLC and other tumors with comparable tumor mutational burden indicating additional immunosuppressive mechanisms at play in the SCLC tumor microenvironment. - M7824 is a bifunctional fusion protein consisting of an anti-programmed death ligand 1 (PDL1) antibody and the extracellular domain of transforming growth factor beta (TGF-beta) receptor type 2, a TGF-beta trap. - Safety data from the dose-escalation study in solid tumors as well as preliminary data from expansion cohorts show that M7824 has a safety profile similar to other checkpoint inhibiting compounds. - Combining immunotherapy, and chemotherapy could synergistically improve the anticancer activity of immunotherapy. Combination of chemotherapy with immunotherapy have improved outcomes in NSCLC and melanoma leading to FDA approvals of such combinations. - We hypothesize that increased DNA damage induced by topotecan and temozolomide will complement the anti-tumor activity of M7824, in recurrent SCLC. OBJECTIVE: - The primary objective of the trial is to determine the efficacy (using objective response rate) of M7824 plus topotecan or temozolomide in relapsed SCLC. ELIGIBILITY: - Subjects with histological or cytological confirmation of SCLC. - Subjects must be greater than or equal to 18 years of age and have a performance status (ECOG) less than or equal to 2. - Subjects must not have received chemotherapy, or undergone major surgery within 2 weeks and radiotherapy within 24 hours prior to enrollment. - Subjects must have adequate organ function and measurable disease. DESIGN: - Arm A (M7824 monotherapy): Up to 10 patients may be treated with M7824 monotherapy to obtain safety and PK data, and a preliminary estimate of clinical responses to M7824 in SCLC. Patients with progressive disease on Arm A may then receive M7824 plus temozolomide as per description of treatment for Arm C. - Arm B (M7824 plus topotecan) and Arm C (M7824 plus temozolomide) will be administered in 3 and 4-week cycles respectively; these arms will have a safety run-in followed by efficacy analysis. Up to 10 patients with extrapulmonary small cell cancer will be enrolled in arm C to receive the combination of M7824 and temozolomide. - Optional tumor biopsies will be obtained at pre-treatment on C1D1 and C1D15 for Arm C; pre-treatment on C1D1 and C2D1 for arms A and B. - Every subject of each arm of the safety run-in will be observed for at least 7 days after first dose of M7824 before the subsequent subject can be treated. Subjects who are not evaluable for DLT will be replaced and not included into evaluation ARMS: - Arm A (3-week cycles): M7824 monotherapy 2400 mg every 3 weeks until disease progression or a criterion in Protocol is met. Patients with progressive disease on Arm A may then receive 1200 mg M7824 every 2 weeks plus temozolomide 200 mg/m^2/day on days 1-5 every 4 weeks. - Arm B (3-week cycles): M7824 2400 mg plus topotecan 1 mg/m2 on days 1-5 every 3 weeks until disease progression or a criterion in Protocol is met. - Arm C (4-week cycles): M7824 1200 mg every 2 weeks plus temozolomide 200 mg/m2/day on days 1-5 every 4 weeks until disease progression or a criterion in Protocol is met. Dose de-escalation Schedule Arm B Dose Level: M7824 - Topotecan Level 1 2400 mg every 3 weeks - 1 mg/m(2) on days 1-5 every 3 weeks Level-1 2400 mg every 3 weeks - 0.75 mg/m(2) on days 1-5 every weeks Dose de-escalation Schedule Arm C Dose Level: M7824 - Temozolomide Level 1200 mg every 2 weeks - 200 mg/m(2)/day on days 1-5 every 4 weeks Level-1 1200 mg every 2 weeks - 150 mg/m(2) day on days 1-5 every 4 weeks
This randomized phase II clinical trial studies whether the addition of nivolumab to cisplatin (or carboplatin) and etoposide will improve outcomes when treating patients with extensive stage small cell lung cancer. Chemotherapy drugs, such as cisplatin, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cisplatin/carboplatin and etoposide together with nivolumab may work better in treating patients with extensive stage small cell lung cancer.
This phase I/II trial studies the best dose and side effects of navitoclax and how well it works when given together with vistusertib in treating patients with small cell lung cancer and solid tumors that have come back (relapsed). Drugs used in chemotherapy, such as navitoclax, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Vistusertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving navitoclax and vistusertib may work better than navitoclax alone in treating patients with small cell lung cancer and solid tumors.
This research study is studying a combination of drugs as a possible treatment for rare genitourinary malignancies among four cohorts, bladder or upper tract carcinoma with variant histology, adrenocortical carcinoma, other rare genitourinary carcinomas and any genitourinary carcinoma with neuroendocrine differentiation. Given preliminary results, the study is being tested in additional patients with bladder or upper tract carcinoma with variant histology at this time while the adrenocortical carcinoma, other rare genitourinary malignancies arms have closed to accrual -The names of the study drugs involved in this study are: - Nivolumab - Ipilimumab