View clinical trials related to Brainstem Glioma.
Filter by:Intraoperative Monitoring of Heart rate variability, Blood pressure variability, Baroreceptorsensivity etc.
In this research study, we want to learn about the safety of the study drugs, ribociclib and everolimus, when given together at different doses after radiation therapy. We also want to learn about the effects, if any, these drugs have on children and young adults with brain tumors. We are asking people to be in this research study who have been diagnosed with a high grade glioma, their tumor has been screened for the Rb1 protein, and they have recently finished radiation therapy. If a patient has DIPG or a Bi-thalamic high grade glioma, they do not need to have the tumor tissue screened for the Rb1 protein, but do need to have finished radiation therapy. Tumor cells grow and divide quickly. In normal cells, there are proteins that control how fast cells grow but in cancer cells these proteins no longer work correctly making tumor cells grow quickly. Both study drugs work in different ways to slow down the growth of tumor cells. The researchers think that if the study drugs are given together soon after radiation therapy, it may help improve the effect of the radiation in stopping or slowing down tumor growth. The study drugs, ribociclib and everolimus, have been approved by the United States Food and Drug Administration (FDA). Ribociclib is approved to treat adults with breast cancer and everolimus is approved for use in adults and children who have other types of cancers. The combination of ribociclib and everolimus has not been tested in children or in people with brain tumors and is considered investigational. The goals of this study are: - Find the safest dose of ribociclib and everolimus that can be given together after radiation. - Learn the side effects (both good and bad) the study drugs have on the body and tumor. - Measure the levels of study drug in the blood over time. - Study the changes in the endocrine system that may be caused by the tumor, surgery or radiation.
Oncolytic adenovirus for pediatric naive DIPG, to be infused after tumor biopsy through the same trajectory in the cerebellar peduncle.
The investigators hypothesize that this study will show that sufficient lymphocyte stem cell can be harvested prior chemoradiation and be reinfused back after treatment, and at least 5 of the 10 patients (50%) will achieve an absolute increase of lymphocyte counts of 300 cells/mm^3 four weeks after stem cell reinfusion in high grade glioma patients.
This is a study to determine the safety and efficacy of the drug, mebendazole, when used in combination with standard chemotherapy drugs for the treatment of pediatric brain tumors. Mebendazole is a drug used to treat infections with intestinal parasites and has a long track record of safety in humans. Recently, it was discovered that mebendazole may be effective in treating cancer as well, in particular brain tumors. Studies using both cell cultures and mouse models demonstrated that mebendazole was effective in decreasing the growth of brain tumor cells. This study focuses on the treatment of a category of brain tumors called gliomas. Low-grade gliomas are tumors arising from the glial cells of the central nervous system and are characterized by slower, less aggressive growth than that of high-grade gliomas. Some low-grade gliomas have a more aggressive biology and an increased likelihood of resistance or recurrence. Low-grade gliomas are often able to be treated by observation alone if they receive a total surgical resection. However, tumors which are only partially resected and continue to grow or cause symptoms, or those which recur following total resection require additional treatment, such as chemotherapy. Due to their more aggressive nature, pilomyxoid astrocytomas, even when totally resected, will often be treated with chemotherapy. The current first-line treatment at our institution for these low-grade gliomas involves a three-drug chemotherapy regimen of vincristine, carboplatin, and temozolomide. However, based on our data from our own historical controls, over 50% of patients with pilomyxoid astrocytomas will continue to have disease progression while on this treatment. We believe that mebendazole in combination with vincristine, carboplatin, and temozolomide may provide an additional therapeutic benefit with increased progression-free and overall survival for low-grade glioma patients, particularly for those with pilomyxoid astrocytomas. High grade gliomas are more aggressive tumors with poor prognoses. The standard therapy is radiation therapy. A variety of adjuvant chemotherapeutic combinations have been used, but with disappointing results. For high-grade gliomas this study will add mebendazole to the established combination of bevacizumab and irinotecan to determine this combinations safety and efficacy
The purpose of this study is to determine whether initial local irradiation with topotecan and following oral antiangiogenic drugs, thalidomide, celecoxib and etoposide are effective in the treatment of pediatric diffuse brainstem tumor.
Background: - AZD8055 is an experimental cancer treatment drug that works by inhibiting a protein called mTOR, which is known to promote tumor cell and blood vessel growth and to control tumor s energy and nutrient levels. AZD8055 is the first drug that inhibits both types of mTOR protein and is expected to be more effective than prior mTOR inhibitors. However, more research is needed to determine its safety and effectiveness in treating brain tumors known as gliomas that have not responded to standard treatments. Objectives: - To evaluate the safety and effectiveness of AZD8055 in individuals with gliomas that have not responded to standard treatments. Eligibility: - Individuals at least 18 years of age who have been diagnosed with gliomas that have not responded to standard chemotherapy, surgery, or radiation. Design: - Participants will be screened with a physical examination, medical history, blood tests, and tumor imaging studies. - Participants will be separated into two treatment groups: one group that will receive surgery to remove the glioma and one that will not have surgical treatment. - Participants in the nonsurgical treatment group will take AZD8055 by mouth daily for a 42-day cycle of treatment. Participants will keep a diary to record doses and keep track of any side effects. - Participants in the surgical treatment group will take AZD8055 by mouth daily for 7 days, and then will have tumor removal surgery. At least 3 weeks after surgery, participants will resume doses of AZD8055 and will continue to take the drug for as long as the tumor does not recur. - During treatment, participants will have regular visits to the clinical center, involving frequent blood and urine tests and other examinations to monitor the effects of treatment. Participants will have imaging studies to study the cancer's response to the treatment. - Participants will continue to have cycles of treatment for as long as the treatment continues to be effective and the side effects are not severe enough to stop participation in the study....
This study evaluated the effect of capecitabine and concomitant radiation therapy in children with newly diagnosed brainstem gliomas.
Background: - Children with brain tumors often have magnetic resonance imaging (MRI) scans to see if the tumor has responded to therapy or to see if the tumor has grown. Sometimes, it is difficult to tell if the scan is abnormal because of tumor size or shape, swelling, scar tissue, or dead tissue. Because brain tumor biopsies require surgery, researchers are looking for more noninvasive ways of evaluating brain tumors. - Positron emission tomography (PET) scans use a radioactive sugar known as 18F-FDG to try to determine if a tumor is active or not. Active tumors generally take up more sugar than the surrounding tissue, but because normal brain tissue uses the same sugar as brain tumors, it is then difficult to tell if tumor tissue is taking up sugar or not. A different radioactive agent, 18F-FLT, is now being studied in some adults with different kinds of tumors. Researchers are interested in determining whether it is possible to use this agent as a marker of tumor activity in children. Objectives: - To determine the safety and effectiveness of 18F-FLT for pediatric glioma scans. - To compare the results of 18F-FLT studies with studies using the radioactive agents 18F-FDG and 1H-MRSI. Eligibility: - Children less than 18 years of age who are having radiation therapy to treat malignant gliomas. Design: - Participants will have scanning tests before radiation therapy, 1 to 3 weeks after radiation therapy, and if researchers suspect that the tumor is growing. - This study will involve three separate imaging tests (1H-MRSI, 18F-FDG PET, and 18F-FLT PET). - Proton spectroscopy (1H-MRSI) is a procedure that is similar to MRI and is performed in the same scanner as an MRI. Because this scan is long (2-3 hours), most children will receive medications from an anesthesiologist so that they can sleep through the procedure. - Within 2 weeks of the 1H-MRSI scan, participants will have the PET scans with both the standard contrast agent (18F-FDG) and the experimental agent (18F-FLT). These scans will last approximately 1 hour each.
The purpose of this study is to prospectively collect specimens from pediatric patients with diffuse intrinsic pontine glioma or brainstem glioma, either during therapy or at autopsy, in order to characterize the molecular abnormalities of this tumor.