View clinical trials related to Brainstem Glioma.
Filter by:Intraoperative Monitoring of Heart rate variability, Blood pressure variability, Baroreceptorsensivity etc.
In this research study, we want to learn about the safety of the study drugs, ribociclib and everolimus, when given together at different doses after radiation therapy. We also want to learn about the effects, if any, these drugs have on children and young adults with brain tumors. We are asking people to be in this research study who have been diagnosed with a high grade glioma, their tumor has been screened for the Rb1 protein, and they have recently finished radiation therapy. If a patient has DIPG or a Bi-thalamic high grade glioma, they do not need to have the tumor tissue screened for the Rb1 protein, but do need to have finished radiation therapy. Tumor cells grow and divide quickly. In normal cells, there are proteins that control how fast cells grow but in cancer cells these proteins no longer work correctly making tumor cells grow quickly. Both study drugs work in different ways to slow down the growth of tumor cells. The researchers think that if the study drugs are given together soon after radiation therapy, it may help improve the effect of the radiation in stopping or slowing down tumor growth. The study drugs, ribociclib and everolimus, have been approved by the United States Food and Drug Administration (FDA). Ribociclib is approved to treat adults with breast cancer and everolimus is approved for use in adults and children who have other types of cancers. The combination of ribociclib and everolimus has not been tested in children or in people with brain tumors and is considered investigational. The goals of this study are: - Find the safest dose of ribociclib and everolimus that can be given together after radiation. - Learn the side effects (both good and bad) the study drugs have on the body and tumor. - Measure the levels of study drug in the blood over time. - Study the changes in the endocrine system that may be caused by the tumor, surgery or radiation.
Oncolytic adenovirus for pediatric naive DIPG, to be infused after tumor biopsy through the same trajectory in the cerebellar peduncle.
The purpose of this study is to determine whether initial local irradiation with topotecan and following oral antiangiogenic drugs, thalidomide, celecoxib and etoposide are effective in the treatment of pediatric diffuse brainstem tumor.
Background: - AZD8055 is an experimental cancer treatment drug that works by inhibiting a protein called mTOR, which is known to promote tumor cell and blood vessel growth and to control tumor s energy and nutrient levels. AZD8055 is the first drug that inhibits both types of mTOR protein and is expected to be more effective than prior mTOR inhibitors. However, more research is needed to determine its safety and effectiveness in treating brain tumors known as gliomas that have not responded to standard treatments. Objectives: - To evaluate the safety and effectiveness of AZD8055 in individuals with gliomas that have not responded to standard treatments. Eligibility: - Individuals at least 18 years of age who have been diagnosed with gliomas that have not responded to standard chemotherapy, surgery, or radiation. Design: - Participants will be screened with a physical examination, medical history, blood tests, and tumor imaging studies. - Participants will be separated into two treatment groups: one group that will receive surgery to remove the glioma and one that will not have surgical treatment. - Participants in the nonsurgical treatment group will take AZD8055 by mouth daily for a 42-day cycle of treatment. Participants will keep a diary to record doses and keep track of any side effects. - Participants in the surgical treatment group will take AZD8055 by mouth daily for 7 days, and then will have tumor removal surgery. At least 3 weeks after surgery, participants will resume doses of AZD8055 and will continue to take the drug for as long as the tumor does not recur. - During treatment, participants will have regular visits to the clinical center, involving frequent blood and urine tests and other examinations to monitor the effects of treatment. Participants will have imaging studies to study the cancer's response to the treatment. - Participants will continue to have cycles of treatment for as long as the treatment continues to be effective and the side effects are not severe enough to stop participation in the study....
This study evaluated the effect of capecitabine and concomitant radiation therapy in children with newly diagnosed brainstem gliomas.
Currently, there are few effective treatments for the following aggressive brain tumors: glioblastoma multiforme, anaplastic astrocytoma, gliomatosis cerebri, gliosarcoma, or brainstem glioma. Surgery and radiation can generally slow down these aggressive brain tumors, but in the majority of patients, these tumors will start growing again in 6-12 months. Adding chemotherapy drugs to surgery and radiation does not clearly improve the cure rate of children with malignant gliomas. The investigators are conducting this study to see if the combination of valproic acid and bevacizumab (also known as AvastinTM) with surgery and radiation will shrink these brain tumors more effectively and improve the chance of cure.