View clinical trials related to Brain Neoplasm, Primary.
Filter by:This Phase 2 trial will assess the safety, tolerability, efficacy, imaging pharmacodynamics, and pharmacokinetics of RVP-001, a novel manganese-based MRI contrast agent, at three escalating dose levels. RVP-001 will be administered as a single IV bolus to subjects with known gadolinium-enhancing central nervous system (CNS) lesions (for example stable brain tumor or multiple sclerosis) who have recently had a gadolinium-based contrast agent (GBCA)-enhanced MRI of the brain.
A greater extent of resection of the contrast-enhancing (CE) tumor part has been associated with improved outcomes in high-grade glioma patients. Recent results suggest that resection of the non-contrast-enhancing (NCE) part might yield even better survival outcomes (supramaximal resection, SMR). Therefore, this study evaluates the efficacy and safety of SMR with and without mapping techniques in HGG patients in terms of survival, functional, neurological, cognitive, and quality of life outcomes. Furthermore, it evaluates which patients benefit the most from SMR, and how they could be identified preoperatively. This study is an international, multicenter, prospective, 2-arm cohort study of observational nature. Consecutive HGG patients will be operated with supramaximal resection or maximal resection at a 1:3 ratio. Primary endpoints are: 1) overall survival and 2) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months, and 6 months postoperatively. Secondary endpoints are 1) residual CE and NCE tumor volume on postoperative T1-contrast and FLAIR MRI scans 2) progression-free survival; 3) onco-functional outcome, and 4) quality of life at 6 weeks, 3 months, and 6 months postoperatively. The study will be carried out by the centers affiliated with the European and North American Consortium and Registry for Intraoperative Mapping (ENCRAM).
Regulation of tissue oxygen homeostasis is critical for cell function, proliferation and survival. Evidence for this continues to accumulate along with our understanding of the complex oxygen-sensing pathways present within cells. Several pathophysiological disorders are associated with a loss in oxygen homeostasis, including heart disease, stroke, and cancer. The microenvironment of tumors in particular is very oxygen heterogeneous, with hypoxic areas which may explain our difficulty treating cancer effectively. Prostate carcinomas are known to be hypoxic. Increasing levels of hypoxia within prostatic tissue is related to increasing clinical stage, patient age and a more aggressive prostate cancer. Several researches indicated that hypoxia might also play a role in esophageal cancer. In glial brain tumors, hypoxia is correlated with more rapid tumor recurrence and the hypoxic burden in newly diagnosed glioblastomas is linked to the biological aggressiveness. In brain metastases CA-IX expression (a marker for hypoxia) is correlated to the primary non-small cell lung carcinomas. Hypoxia enhances proliferation, angiogenesis, metastasis, chemoresistance and radioresistance of hepatocellular carcinoma. The hypoxic markers HIF-1α, VEGF, CA-IX and GLUT-1 were all over expressed in colorectal cancer and its liver metastases. Based on literature, hypoxia in tumors originating or disseminated to prostate, esophagus, brain and rectum cancer will be studied in this trial.
Potential subjects with progressive Grade II primary brain tumor that have IDH1 positive testing from the primary tumor (initial diagnosis) will be offered this treatment study in order to test the safety of the PEPIDH1M vaccine in combination with standard chemotherapy (temozolomide).
Study Objective: Brain tumors are poorly understood. The purpose of this research is to examine whether factors in lifestyle play a role in brain tumor development. The study will also investigate the contribution of inherited susceptibility to the risk of brain cancer. By gaining a better understanding of these influences, the investigators hope to learn how to prevent brain tumors in future generations, and to develop more effective strategies for treatment. Study Protocol: This is a case-control investigation. Persons affected with a brain tumor are compared to unaffected persons on previous medical history, diet and other factors. Those enrolled in the study will participate in an interview on general background, diet, medical history and lifestyle, and will provide a sample of DNA, clippings of your toenails, and a tap water sample from your home. All procedures are performed in the clinic or through the mail. 'Cases': Cases eligible for the study are persons with a recent diagnosis of a primary brain tumor (glioma or meningioma), at least 18 years of age. 'Controls': Controls in the study are non-family members of patients, similar in age and of the same gender. Suitable controls include in-laws, friends, neighbors and co-workers.