Brain Metastases Clinical Trial
— CYBER-SPACEOfficial title:
Cyberknife Radiosurgery for Patients With Brain Metastases Diagnosed With Either SPACE or MPRAGE Sequence - A Prospective Randomized Evaluation of Response and Toxicity
Verified date | November 2022 |
Source | University Hospital Heidelberg |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
For patients with cerebral oligometastases who are in adequate clinical condition stereotactic radiosurgery (SRS) is the treatment of choice, being recommended by international guidelines for the treatment of one to four lesions. Newer findings have shown that for patients with more than four lesions SRS can be considered as a favorable alternative to whole-brain radiotherapy (WBRT), the currently established standard-of-care treatment. With modern techniques highly conformal SRS of multiple lesions has become feasible with comparable clinical effort and minimal toxicity as compared to WBRT. Developments in magnetic resonance imaging (MRI- imaging) have produced highly sensitive contrast-enhanced three-dimensional fast spin echo sequences such as SPACE that facilitate the detection of very small and early-stage lesions in a fashion superior to the established Magnetization Prepared Rapid Gradient Echo (MPRAGE) series. Since it has been established that the response of brain metastases to SRS is better for smaller lesions and that WBRT can come at the price of significant neurotoxicity, the investigators hypothesize that 1) earlier detection of small brain metastases and 2) early and aggressive treatment of those by SRS will result in an overall clinical benefit by delaying the failure of repeated localized therapy and thus preserving quality of life and potentially prolonging overall survival. On the other hand however, overtreatment might be a valid concern with this approach since it has yet to be proved that a clinical benefit can be achieved. The current study aims to stretch the boundaries of the term "cerebral oligometastases" by performing SRS for up to ten cerebral metastases, compared to the established clinical standard of four, given that existing data supports the non-inferiority of this approach and given that modern Cyberknife SRS facilitates the treatment of multiple lesions with minimal treatment-associated toxicity.
Status | Completed |
Enrollment | 203 |
Est. completion date | June 1, 2021 |
Est. primary completion date | June 1, 2021 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - radiologically confirmed metastases of the brain with an underlying history of a malignant illness - between one and ten suspect intracranial lesions, taking into consideration all available series of the pre-therapeutic MRI (performed at Heidelberg University Hospital and including SPACE sequence) - age = 18 years of age - Karnofsky Performance Score (KPS) = 70 - for women with childbearing potential, (and men) adequate contraception. - ability to understand character and individual consequences of the clinical trial - written informed consent (must be available before enrolment in the trial) Exclusion Criteria: - refusal of the patient to take part in the study - Small-cell lung cancer (SCLC) as primary malignant illness - More than 10 suspect intracranial lesions in the initial pre-therapeutic MRI imaging (performed at Heidelberg University Hospital and including SPACE sequence) - metastasis so close to OAR that initial single-session SRS would be impossible due to lacking radiotolerance - known contraindications against the performing of cranial MRI - previous radiotherapy of the brain - Patients who have not yet recovered from acute toxicities of prior therapies - Pregnant or lactating women - Participation in another clinical study or observation period of competing trials, respectively |
Country | Name | City | State |
---|---|---|---|
Germany | University Hospital of Heidelberg, Department of Radiation Oncology | Heidelberg |
Lead Sponsor | Collaborator |
---|---|
Juergen Debus | Heidelberg University |
Germany,
Aoyama H, Tago M, Kato N, Toyoda T, Kenjyo M, Hirota S, Shioura H, Inomata T, Kunieda E, Hayakawa K, Nakagawa K, Kobashi G, Shirato H. Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys. 2007 Aug 1;68(5):1388-95. — View Citation
Arvold ND, Lee EQ, Mehta MP, Margolin K, Alexander BM, Lin NU, Anders CK, Soffietti R, Camidge DR, Vogelbaum MA, Dunn IF, Wen PY. Updates in the management of brain metastases. Neuro Oncol. 2016 Aug;18(8):1043-65. doi: 10.1093/neuonc/now127. Review. — View Citation
Chang EL, Hassenbusch SJ 3rd, Shiu AS, Lang FF, Allen PK, Sawaya R, Maor MH. The role of tumor size in the radiosurgical management of patients with ambiguous brain metastases. Neurosurgery. 2003 Aug;53(2):272-80; discussion 280-1. — View Citation
Chang SD, Main W, Martin DP, Gibbs IC, Heilbrun MP. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery. 2003 Jan;52(1):140-6; discussion 146-7. — View Citation
Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991 May 15;21(1):109-22. Review. — View Citation
Gaspar L, Scott C, Rotman M, Asbell S, Phillips T, Wasserman T, McKenna WG, Byhardt R. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys. 1997 Mar 1;37(4):745-51. — View Citation
Higgins JP, White IR, Wood AM. Imputation methods for missing outcome data in meta-analysis of clinical trials. Clin Trials. 2008;5(3):225-39. doi: 10.1177/1740774508091600. — View Citation
Johnson JD, Young B. Demographics of brain metastasis. Neurosurg Clin N Am. 1996 Jul;7(3):337-44. Review. — View Citation
Kakeda S, Korogi Y, Hiai Y, Ohnari N, Moriya J, Kamada K, Hanamiya M, Sato T, Kitajima M. Detection of brain metastasis at 3T: comparison among SE, IR-FSE and 3D-GRE sequences. Eur Radiol. 2007 Sep;17(9):2345-51. Epub 2007 Feb 22. — View Citation
Kato Y, Higano S, Tamura H, Mugikura S, Umetsu A, Murata T, Takahashi S. Usefulness of contrast-enhanced T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions in detection of small brain metastasis at 3T MR imaging: comparison with magnetization-prepared rapid acquisition of gradient echo imaging. AJNR Am J Neuroradiol. 2009 May;30(5):923-9. doi: 10.3174/ajnr.A1506. Epub 2009 Feb 12. — View Citation
Kocher M, Soffietti R, Abacioglu U, Villà S, Fauchon F, Baumert BG, Fariselli L, Tzuk-Shina T, Kortmann RD, Carrie C, Ben Hassel M, Kouri M, Valeinis E, van den Berge D, Collette S, Collette L, Mueller RP. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol. 2011 Jan 10;29(2):134-41. doi: 10.1200/JCO.2010.30.1655. Epub 2010 Nov 1. — View Citation
Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, Bendszus M, Brown PD, Camidge DR, Chang SM, Dancey J, de Vries EG, Gaspar LE, Harris GJ, Hodi FS, Kalkanis SN, Linskey ME, Macdonald DR, Margolin K, Mehta MP, Schiff D, Soffietti R, Suh JH, van den Bent MJ, Vogelbaum MA, Wen PY; Response Assessment in Neuro-Oncology (RANO) group. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015 Jun;16(6):e270-8. doi: 10.1016/S1470-2045(15)70057-4. Epub 2015 May 27. Review. — View Citation
Linskey ME, Andrews DW, Asher AL, Burri SH, Kondziolka D, Robinson PD, Ammirati M, Cobbs CS, Gaspar LE, Loeffler JS, McDermott M, Mehta MP, Mikkelsen T, Olson JJ, Paleologos NA, Patchell RA, Ryken TC, Kalkanis SN. The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol. 2010 Jan;96(1):45-68. doi: 10.1007/s11060-009-0073-4. Epub 2009 Dec 4. Review. Erratum in: J Neurooncol. 2010 Jan;96(1):69-70. — View Citation
Mugler JP 3rd, Bao S, Mulkern RV, Guttmann CR, Robertson RL, Jolesz FA, Brookeman JR. Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology. 2000 Sep;216(3):891-9. — View Citation
Mulkern RV, Wong ST, Winalski C, Jolesz FA. Contrast manipulation and artifact assessment of 2D and 3D RARE sequences. Magn Reson Imaging. 1990;8(5):557-66. — View Citation
Shen CJ, Rigamonti D, Redmond KJ, Kummerlowe MN, Lim M, Kleinberg LR. The strategy of repeat stereotactic radiosurgery without whole brain radiation treatment for new brain metastases: Outcomes and implications for follow-up monitoring. Pract Radiat Oncol. 2016 Nov - Dec;6(6):409-416. doi: 10.1016/j.prro.2016.04.004. Epub 2016 Apr 26. — View Citation
Shultz DB, Modlin LA, Jayachandran P, Von Eyben R, Gibbs IC, Choi CYH, Chang SD, Harsh GR 4th, Li G, Adler JR, Hancock SL, Soltys SG. Repeat Courses of Stereotactic Radiosurgery (SRS), Deferring Whole-Brain Irradiation, for New Brain Metastases After Initial SRS. Int J Radiat Oncol Biol Phys. 2015 Aug 1;92(5):993-999. doi: 10.1016/j.ijrobp.2015.04.036. Epub 2015 Apr 28. — View Citation
Sperduto PW, Berkey B, Gaspar LE, Mehta M, Curran W. A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1,960 patients in the RTOG database. Int J Radiat Oncol Biol Phys. 2008 Feb 1;70(2):510-4. Epub 2007 Oct 10. — View Citation
van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res. 2007 Jun;16(3):219-42. — View Citation
Wowra B, Muacevic A, Tonn JC. CyberKnife radiosurgery for brain metastases. Prog Neurol Surg. 2012;25:201-9. doi: 10.1159/000331193. Epub 2012 Jan 6. Review. — View Citation
Yamamoto M, Serizawa T, Shuto T, Akabane A, Higuchi Y, Kawagishi J, Yamanaka K, Sato Y, Jokura H, Yomo S, Nagano O, Kenai H, Moriki A, Suzuki S, Kida Y, Iwai Y, Hayashi M, Onishi H, Gondo M, Sato M, Akimitsu T, Kubo K, Kikuchi Y, Shibasaki T, Goto T, Takanashi M, Mori Y, Takakura K, Saeki N, Kunieda E, Aoyama H, Momoshima S, Tsuchiya K. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 2014 Apr;15(4):387-95. doi: 10.1016/S1470-2045(14)70061-0. Epub 2014 Mar 10. — View Citation
* Note: There are 21 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Ineligibility for further cerebral SRS | simultaneous new occurrence or progression of > 10 brain metastases | 12 months after initial SRS | |
Secondary | Overall survival (OS) | Time interval between the date of RT begin and the date of death or date of leaving the study e.g., lost to follow up) whatever occurs first. | 12 months after initial SRS | |
Secondary | cognitive function | CANTAB Test (Cambridge Neuropsychological Test Automated Battery ) | 6 months after initial SRS | |
Secondary | quality of life | EORTC QLQ-C30 questionnaire to assess the QoL of cancer patients, clinical assessment | 6 months after initial SRS |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT04074096 -
Binimetinib Encorafenib Pembrolizumab +/- Stereotactic Radiosurgery in BRAFV600 Melanoma With Brain Metastasis
|
Phase 2 | |
Recruiting |
NCT04474925 -
Pre- Versus Post-operative SRS for Resectable Brain Metastases
|
Phase 3 | |
Recruiting |
NCT05358340 -
Dual Perfusion Imaging for Characterizing Vascular Architecture of Brain Lesions
|
N/A | |
Recruiting |
NCT05559853 -
Developing a New MRI Technique to Understand Changes in Brain Tumors After Treatment
|
||
Completed |
NCT03189381 -
Pilot Phase 2 Study Whole Brain Radiation Therapy With Simultaneous Integrated Boost for Patients With Brain Metastases
|
N/A | |
Completed |
NCT02082587 -
Toronto BNB Pilot Study
|
N/A | |
Terminated |
NCT01551680 -
A Trial Evaluating Concurrent Whole Brain Radiotherapy and Iniparib in Multiple Non Operable Brain Metastases
|
Phase 1 | |
Terminated |
NCT00717275 -
Study of Temozolomide to Treat Newly Diagnosed Brain Metastases
|
Phase 2 | |
Recruiting |
NCT05048212 -
A Phase II Study of Nivolumab With Ipilimumab and Cabozantinib in Patients With Untreated Renal Cell Carcinoma Brain Metastases
|
Phase 2 | |
Recruiting |
NCT03714243 -
Blood Brain Barrier Disruption (BBBD) Using MRgFUS in the Treatment of Her2-positive Breast Cancer Brain Metastases
|
N/A | |
Recruiting |
NCT05573815 -
Evaluation of Clinical Decision Support System for Brain Metastasis Using Brain MR Images
|
N/A | |
Recruiting |
NCT04899908 -
Stereotactic Brain-directed Radiation With or Without Aguix Gadolinium-Based Nanoparticles in Brain Metastases
|
Phase 2 | |
Completed |
NCT04507217 -
Tislelizumab Combined With Pemetrexed/ Carboplatin in Patients With Brain Metastases of Non-squamous NSCLC
|
Phase 2 | |
Recruiting |
NCT05452005 -
Fluorine-18-AlphaVBeta6-Binding Peptide Positron Emission Tomography in Metastatic Non-Small Cell Lung Cancer
|
Phase 1 | |
Recruiting |
NCT06457906 -
SRS/SRT/Hypo-RT Versus HA-WBRT for No More Than 10 Brain Metastases in SCLC
|
Phase 3 | |
Completed |
NCT04170777 -
Perfexion Registration Using CBCT
|
||
Recruiting |
NCT03027544 -
Tomotherapy for Refractory Brain Metastases
|
N/A | |
Completed |
NCT04178330 -
Tomotherapy as Primary Radiotherapy for Multipule Brain Metastases
|
N/A | |
Terminated |
NCT02187822 -
Fractionated Stereotactic Radiotherapy (FSRT) in Treatment of Brain Metastases
|
Phase 1 | |
Terminated |
NCT00538343 -
RTA 744 in Breast Cancer Patients With Progression of Previously Irradiated Brain Metastases
|
Phase 2 |