Clinical Trials Logo

Clinical Trial Summary

This is a trial that evaluates the preservation of cognition and neuropsychiatric function following genu-sparing whole brain radiation in patients with brain metastases.


Clinical Trial Description

Efforts at treating radiation-induced cognitive and neuropsychiatric declines with medications have shown only minimal preliminary cognitive benefit and do not affect quality of life (QOL). Given the structural and functional brain alterations associated with WBRT, preventing rather than treating these radiation-induced changes may produce more favorable outcomes. Innovative radiotherapy techniques can limit the dose of radiation applied to specific brain structures without compromising tumor coverage. In this light, Radiation Therapy Oncology Group (RTOG) recently published a study evaluating the hippocampal avoidance whole brain radiation therapy (WBRT) in patients with brain metastases. They suggest potential preservation of cognitive function with this approach with no perceived detriment in survival. This concept is currently undergoing investigation in a definitive randomized controlled study (NRG-CC003) in patients receiving prophylactic cranial irradiation for small cell lung cancer. However, no other studies to date have prospectively evaluated avoidance of other particularly sensitive brain regions. One brain region that has received little attention in the radiotherapy literature is the corpus callosum. The genu of the corpus callosum contains thin, densely packed neural fibers that primarily connect the prefrontal association areas and the anterior inferior parietal regions of the brain. Damage or thinning of the genu is associated with reduced functioning on tests of executive functioning, attention, working memory, processing speed, verbal fluency and memory in a variety of healthy and patient groups including aging, cerebral small vessel disease, traumatic brain injury, multiple sclerosis , human immunodeficiency virus, mild cognitive impairment secondary to Parkinson's disease, and euthymic bipolar disorder. The limited existing data in adults receiving WBRT for brain metastases suggest that they also perceive progressive declines in motivation following treatment. Given its apparent involvement in a wide range of cognitive processes, the genu of the corpus callosum is an excellent candidate for sparing in WBRT. This relatively small area has the potential to preserve cognitive functioning across several domains if guarded from the damaging effects of radiation. In this study patients will receive the standard whole brain radiation dose of 3000 centigray (cGy) in 10 fractions, but intensity modulated radiation therapy will be utilized to limit radiation dose to the genu of the corpus callosum. Patients will undergo cognitive testing at baseline and at 4-, 6- and 12-months following completion of brain radiation to evaluate the study hypothesis. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03223922
Study type Interventional
Source Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
Contact Kristin Redmond, MD
Phone 410-614-1642
Email kjanson3@jhmi.edu
Status Recruiting
Phase N/A
Start date July 19, 2017
Completion date December 2030

See also
  Status Clinical Trial Phase
Active, not recruiting NCT04074096 - Binimetinib Encorafenib Pembrolizumab +/- Stereotactic Radiosurgery in BRAFV600 Melanoma With Brain Metastasis Phase 2
Recruiting NCT04474925 - Pre- Versus Post-operative SRS for Resectable Brain Metastases Phase 3
Recruiting NCT05358340 - Dual Perfusion Imaging for Characterizing Vascular Architecture of Brain Lesions N/A
Recruiting NCT05559853 - Developing a New MRI Technique to Understand Changes in Brain Tumors After Treatment
Completed NCT03189381 - Pilot Phase 2 Study Whole Brain Radiation Therapy With Simultaneous Integrated Boost for Patients With Brain Metastases N/A
Completed NCT02082587 - Toronto BNB Pilot Study N/A
Terminated NCT01551680 - A Trial Evaluating Concurrent Whole Brain Radiotherapy and Iniparib in Multiple Non Operable Brain Metastases Phase 1
Terminated NCT00717275 - Study of Temozolomide to Treat Newly Diagnosed Brain Metastases Phase 2
Recruiting NCT05048212 - A Phase II Study of Nivolumab With Ipilimumab and Cabozantinib in Patients With Untreated Renal Cell Carcinoma Brain Metastases Phase 2
Recruiting NCT03714243 - Blood Brain Barrier Disruption (BBBD) Using MRgFUS in the Treatment of Her2-positive Breast Cancer Brain Metastases N/A
Recruiting NCT05573815 - Evaluation of Clinical Decision Support System for Brain Metastasis Using Brain MR Images N/A
Recruiting NCT04899908 - Stereotactic Brain-directed Radiation With or Without Aguix Gadolinium-Based Nanoparticles in Brain Metastases Phase 2
Completed NCT04507217 - Tislelizumab Combined With Pemetrexed/ Carboplatin in Patients With Brain Metastases of Non-squamous NSCLC Phase 2
Recruiting NCT05452005 - Fluorine-18-AlphaVBeta6-Binding Peptide Positron Emission Tomography in Metastatic Non-Small Cell Lung Cancer Phase 1
Recruiting NCT06457906 - SRS/SRT/Hypo-RT Versus HA-WBRT for No More Than 10 Brain Metastases in SCLC Phase 3
Completed NCT04170777 - Perfexion Registration Using CBCT
Recruiting NCT03027544 - Tomotherapy for Refractory Brain Metastases N/A
Completed NCT04178330 - Tomotherapy as Primary Radiotherapy for Multipule Brain Metastases N/A
Terminated NCT02187822 - Fractionated Stereotactic Radiotherapy (FSRT) in Treatment of Brain Metastases Phase 1
Terminated NCT00538343 - RTA 744 in Breast Cancer Patients With Progression of Previously Irradiated Brain Metastases Phase 2