View clinical trials related to Brain Metastases.
Filter by:The study is a prospective, randomized controlled phase III trial, to test the efficacy, safety and neurocognitive outcomes of advanced NSCLC patients, following stereotactic radiosurgery (SRS) for 1 inoperable brain metastasis or 2-10 brain metastases, treated with NovoTTF-200M and supportive treatment compared to supportive treatment alone. The device is an experimental, portable, battery operated device for chronic administration of alternating electric fields (termed TTFields or TTF) to the region of the malignant tumor, by means of surface, insulated electrode arrays.
The purpose of this research project is to test the effectiveness of nivolumab versus nivolumab together with ipilimumab for the treatment of melanoma brain metastases. Patients are eligible to join this study if they are aged 18 years or above and have been diagnosed with melanoma with brain metastases.
The primary objective of A-PLUS trial is to evaluate and compare the efficacy of induction BEEP (bevacizumab preconditioning followed by etoposide and cisplatin) followed by whole bran radiotherapy (WBRT) with WBRT alone in the controlling of brain metastases (BM) in metastatic breast cancer (MBC) patients who have not previously received WBRT. In past 2 years, the research team has demonstrated that BEEP regimen is a highly effective treatment for brain metastases of breast cancer progressing from WBRT by a multi-center phase II study (ClinicalTrials.gov Identifier: NCT01281696). The basic concept of preconditioning, as referred to starting bevacizumab 1 day before chemotherapy, is that the effect of bevacizumab induced tumor vascular normalization takes time to mature. The investigators hypothesized that as induction BEEP decreased the size of brain tumors, the effectiveness of WBRT would be maximized. The investigators expect this integrated approach will do greater benefit to MBC patients with BM, irrespective of subtype.
Radiotherapy to the whole brain is standard treatment for cancer that has spread to the brain (brain metastases) as it treats both the metastases that can be seen on scans and the brain metastases that are too small to be seen on scans. This study will use a novel radiotherapy technique, called volumetric modulated arc therapy (VMAT), to treat patients with brain metastases. This technique allows delivery of both a standard radiation dose to the whole brain as well as a higher radiation dose to the brain metastases at the same time. The study will assess the effectiveness of using VMAT in treating brain metastases, and examine its potential side-effects.
Vorinostat in combination with radiation therapy can be administered safely and will be tolerated in patients with brain metastases, while providing an assessment of the anti-tumor activity of this combination. This is a multi-center, open-label, non-randomized Phase I study in patients with brain metastases. Patients will be administered oral Vorinostat and radiation therapy and will be treated for 3 weeks. Patients will be enrolled in cohorts and will be treated at sequentially rising dose levels of Vorinostat combined with radiation therapy. We will initially enter 3 subjects at each dose. If none of the three experiences a dose-limiting toxicity we will proceed to the next dose. If one of the three experiences that level of toxicity, we will accrue 3 more subjects at that dose. If at any time there are two or more dose-limiting toxicities (in the 3-6 subjects) on a given dose, we will drop down to a lower dose. Dose escalation will continue until the MTD of Vorinostat and radiation therapy is established. The MTD will then be one dose below the DLT occurring in at least 1 out of 3 subjects (2 out of 6 patients).