Clinical Trials Logo

Clinical Trial Summary

Objective: In this study we will develop and apply imaging techniques to perform the first three-dimensional (3-D) measurements of brain biomechanics during mild head movement in healthy human subjects. Biomechanics is the application of mechanics, or the physical principles in action when force is applied to an object, to the anatomical structure and/or function of organisms. Such techniques will be invaluable for building computational models of brain biomechanics, understanding variability of brain biomechanics across individual characteristics, such as age and sex, and determining brain sub-structures at risk for damage when movement of the head is accelerated, such as during a traumatic event. Study Population: Measurements will be performed on 90 healthy men and women aged 18-65. Design: We will build upon the model pioneered by our collaborator, Dr. Philip Bayly. The model places a human subject in a magnetic resonance (MR) scanner with one of two head support units that allows a specific range of motion. Each head support is latched such that it can be released by the subject, and results in either a rotation of the head of approximately 30 degrees or a flexion-extension of the head of approximately 4 degrees. Although both supports are weighted so that the motion is repeatable if the subject is relaxed, the subject can easily counteract the weight. The resulting acceleration/deceleration is small (in the range of normal activities, such as turning one's head during swimming) and has been validated and used in other human investigations of brain biomechanics. The subject repeats the motion multiple times during the MR scan under their own volition and desired pace to measure motion of the head and brain. Outcome measures: This project is a pilot study evaluating the potential of extracting three-dimensional estimates of brain deformation, such as strain measurements, using MR imaging. A primary outcome of this project will be a fast MR acquisition sequence for measuring 3-D brain deformation. The sequence will be evaluated by applying the protocol to human subjects, followed by preliminary quantification of the reproducibility and stability of deformation measurements.


Clinical Trial Description

Objective In this study we will develop and apply imaging techniques to perform the first three-dimensional (3-D) measurements of brain biomechanics during mild head movement in healthy human subjects. Biomechanics is the application of mechanics, or the physical principles in action when force is applied to an object, to the anatomical structure and/or function of organisms. Such techniques will be invaluable for building computational models of brain biomechanics, understanding variability of brain biomechanics across individual characteristics, such as age and sex, and determining brain sub-structures at risk for damage when movement of the head is accelerated, such as during a traumatic event. Using the developed imaging techniques above, we will acquire a sufficient number of data sets to create templates of the average brain response and stiffness based on age and sex. Anonymized raw and processed data will be made publicly available to improve computational models of brain biomechanics. Study Population Measurements will be performed on 194 healthy men and women aged 18-65. Design We will build upon the model pioneered by our collaborator, Dr. Philip Bayly. The model places a human subject in a magnetic resonance (MR) scanner with one of two head support units that allows a specific range of motion. Each head support is latched such that it can be released by the subject, and results in either a rotation of the head of approximately 30 degrees or a flexion-extension of the head of approximately 4 degrees. Although both supports are weighted so that the motion is repeatable if the subject is relaxed, the subject can easily counteract the weight. The resulting acceleration/deceleration is small (in the range of normal activities, such as turning one's head during swimming) and has been validated and used in other human investigations of brain biomechanics. The subject repeats the motion multiple times during the MR scan under their own volition and desired pace to measure motion of the head and brain. Additionally, we will use a type of MRI called magnetic resonance elastography (MRE), which measures brain motion in response to mild head vibration, to investigate brain stiffness. Outcome measures This project is a study evaluating the potential of extracting three-dimensional estimates of brain deformation, such as strain measurements and stiffness, using MR imaging. A primary outcome of this project will be MRI techniques for characterizing 3-D brain biomechanics. The techniques will be evaluated by applying the protocol to human subjects, followed by preliminary quantification of the reproducibility and stability of deformation and stiffness measurements. Acquired data will be made publicly available for use by the research community. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT01633268
Study type Observational
Source National Institutes of Health Clinical Center (CC)
Contact Tracy L Cropper, R.N.
Phone (301) 402-6132
Email tcropper@cc.nih.gov
Status Recruiting
Phase
Start date July 4, 2012

See also
  Status Clinical Trial Phase
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Completed NCT04356963 - Adjunct VR Pain Management in Acute Brain Injury N/A
Completed NCT03418129 - Neuromodulatory Treatments for Pain Management in TBI N/A
Terminated NCT03698747 - Myelin Imaging in Concussed High School Football Players
Recruiting NCT05130658 - Study to Improve Ambulation in Individuals With TBI Using Virtual Reality -Based Treadmill Training N/A
Recruiting NCT04560946 - Personalized, Augmented Cognitive Training (PACT) for Service Members and Veterans With a History of TBI N/A
Completed NCT05160194 - Gaining Real-Life Skills Over the Web N/A
Recruiting NCT02059941 - Managing Severe Traumatic Brain Injury (TBI) Without Intracranial Pressure Monitoring (ICP) Monitoring Guidelines N/A
Recruiting NCT03940443 - Differences in Mortality and Morbidity in Patients Suffering a Time-critical Condition Between GEMS and HEMS
Recruiting NCT03937947 - Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
Completed NCT04465019 - Exoskeleton Rehabilitation on TBI
Recruiting NCT04530955 - Transitioning to a Valve-Gated Intrathecal Drug Delivery System (IDDS) N/A
Recruiting NCT03899532 - Remote Ischemic Conditioning in Traumatic Brain Injury N/A
Suspended NCT04244058 - Changes in Glutamatergic Neurotransmission of Severe TBI Patients Early Phase 1
Completed NCT03307070 - Adapted Cognitive Behavioral Treatment for Depression in Patients With Moderate to Severe Traumatic Brain Injury N/A
Recruiting NCT04274777 - The Relationship Between Lipid Peroxidation Products From Traumatic Brain Injury and Secondary Coagulation Disorders
Withdrawn NCT05062148 - Fundamental and Applied Concussion Recovery Modality Research and Development: Applications for the Enhanced Recovery N/A
Withdrawn NCT04199130 - Cognitive Rehabilitation and Brain Activity of Attention-Control Impairment in TBI N/A
Withdrawn NCT03626727 - Evaluation of the Efficacy of Sodium Oxybate (Xyrem®) in Treatment of Post-traumatic Narcolepsy and Post-traumatic Hypersomnia Early Phase 1