Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02656433
Other study ID # TRNS23062015
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date March 1, 2017
Est. completion date January 31, 2023

Study information

Verified date May 2024
Source Spanish Foundation for Neurometrics Development
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

50 children between 4 and 7 years old with moderate to severe motor impairment, 50% males 50% females will participate in an interventional study in two groups: placebo and experimental group. Placebo group will only receive traditional treatment with physiotherapy and the Experimental or tRNS Group will receive physiotherapy plus tRNS BrainNoninvasive Stimulation.


Description:

In this Interventional Study with Double Blind Assignment to Placebo and Experimental Group, Gross Motor Function Measure (GMFM) and Neurophysiological are the parameters measured with EEG amplifier before and after 30 sessions. Work hypothesis is that the tRNS Group will present better motor functionality after 30 sessions of 30 minutes of duration of electrical brain stimulation administered during physiotherapy exercises 2 days per week than the Group that only receives treatment with physiotherapy during 30 minutes 2 days per week without tRNS.


Recruitment information / eligibility

Status Completed
Enrollment 92
Est. completion date January 31, 2023
Est. primary completion date September 13, 2021
Accepts healthy volunteers No
Gender All
Age group 3 Years to 7 Years
Eligibility Inclusion Criteria: - Patients between 3 and 7 years. - Meet criteria for Congenital or Acquired Brain Injury . - Patients who have been diagnosed at least 1 year before inclusion in the study. Exclusion Criteria: - Acute visual or hearing loss. - Other neurological disorders: migraine, epilepsy, tuberous sclerosis - Other neurodevelopmental disorders like ASD, ADHD, PDD, etc ...

Study Design


Intervention

Device:
Transcranial Random Noise Stimulation
A special Helmet supply weak electrical currents in the head
Other:
Physiotherapy
Standard of care physiotherapy aimed to the motor impairment the subject presents

Locations

Country Name City State
United Kingdom New Remedies Liverpool Merseyside

Sponsors (2)

Lead Sponsor Collaborator
Spanish Foundation for Neurometrics Development Universidad Católica San Antonio de Murcia

Country where clinical trial is conducted

United Kingdom, 

References & Publications (23)

Bashir S, Yoo WK. Cheap Technology Like Transcrinal Direct Current Stimulation (tDCS) Could Help in Stroke Rehabilitation in South Asia. Basic Clin Neurosci. 2013 Summer;4(3):188-9. No abstract available. — View Citation

Benninger DH, Lomarev M, Lopez G, Wassermann EM, Li X, Considine E, Hallett M. Transcranial direct current stimulation for the treatment of Parkinson's disease. J Neurol Neurosurg Psychiatry. 2010 Oct;81(10):1105-11. doi: 10.1136/jnnp.2009.202556. Erratum — View Citation

Fertonani A, Pirulli C, Miniussi C. Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci. 2011 Oct 26;31(43):15416-23. doi: 10.1523/JNEUROSCI.2002-11.2011. — View Citation

Fregni F, Boggio PS, Valle AC, Rocha RR, Duarte J, Ferreira MJ, Wagner T, Fecteau S, Rigonatti SP, Riberto M, Freedman SD, Pascual-Leone A. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisph — View Citation

Fregni F, Otachi PT, Do Valle A, Boggio PS, Thut G, Rigonatti SP, Pascual-Leone A, Valente KD. A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Ann Neurol. 2006 Oct;60(4):447-55. doi: 10.100 — View Citation

Ilyukhina VA, Kozhushko NY, Matveev YK, Ponomareva EA, Chernysheva EM, Shaptilei MA. Transcranial micropolarization in the combined therapy of speech and general psychomotor retardation in children of late preschool age. Neurosci Behav Physiol. 2005 Nov;3 — View Citation

McCleery JP, Elliott NA, Sampanis DS, Stefanidou CA. Motor development and motor resonance difficulties in autism: relevance to early intervention for language and communication skills. Front Integr Neurosci. 2013 Apr 24;7:30. doi: 10.3389/fnint.2013.0003 — View Citation

Mueller A, Candrian G, Grane VA, Kropotov JD, Ponomarev VA, Baschera GM. Discriminating between ADHD adults and controls using independent ERP components and a support vector machine: a validation study. Nonlinear Biomed Phys. 2011 Jul 19;5:5. doi: 10.118 — View Citation

Mueller A, Candrian G, Kropotov JD, Ponomarev VA, Baschera GM. Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomed Phys. 2010 Jun 3;4 Suppl 1(Suppl 1):S1. doi: 10.1186/1753-4631-4-S1 — View Citation

Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Paulus W, Hummel F, Boggio PS, Fregni F, Pascual-Leone A. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008 Jul;1(3):206-23. doi: 10.1016/j.brs.2008.06.004. E — View Citation

Nitsche MA, Doemkes S, Karakose T, Antal A, Liebetanz D, Lang N, Tergau F, Paulus W. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol. 2007 Apr;97(4):3109-17. doi: 10.1152/jn.01312.2006. Epub 2007 Ja — View Citation

Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol. 2003 Apr;114(4):600-4. doi: 10.1016/s1388-2457(02)00412-1. — View Citation

Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep 15;527 Pt 3(Pt 3):633-9. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x. — View Citation

Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001 Nov 27;57(10):1899-901. doi: 10.1212/wnl.57.10.1899. — View Citation

Paulus W. Transcranial electrical stimulation (tES - tDCS; tRNS, tACS) methods. Neuropsychol Rehabil. 2011 Oct;21(5):602-17. doi: 10.1080/09602011.2011.557292. Epub 2011 Aug 5. — View Citation

Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007 May 30;72(4-6):208-14. doi: 10.1016/j.brainresbull.2007.01.004. Epub 2007 Jan 24. — View Citation

Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998 Jul 13;9(10):2257-60. doi: 10.1097/00001756-199807130-00020. — View Citation

Rossi S, Hallett M, Rossini PM, Pascual-Leone A; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009 Dec;120( — View Citation

Schlaug G, Renga V, Nair D. Transcranial direct current stimulation in stroke recovery. Arch Neurol. 2008 Dec;65(12):1571-6. doi: 10.1001/archneur.65.12.1571. — View Citation

Schneider HD, Hopp JP. The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism. Clin Linguist Phon. 2011 Jun;25(6-7):640-54. doi: 10.3109/02 — View Citation

Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011 Feb;17(1):37-53. doi: 10.1177/1073858410386614. — View Citation

Vanneste S, Fregni F, De Ridder D. Head-to-Head Comparison of Transcranial Random Noise Stimulation, Transcranial AC Stimulation, and Transcranial DC Stimulation for Tinnitus. Front Psychiatry. 2013 Dec 18;4:158. doi: 10.3389/fpsyt.2013.00158. eCollection — View Citation

Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010 Nov 1;5(11):e13766. doi: 10.1371/journal.pone.0013766. — View Citation

* Note: There are 23 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Gross Motor Function Measure (GMFM) as measured by the Gross Motor Function scale Motor Functionality Scale Up to five months
Secondary Differences in Power Fast Fourier Transformation before and after intervention Changes in Power in EEG over different electrodes up to five months
See also
  Status Clinical Trial Phase
Completed NCT02710123 - Sub-Threshold Exercise Treatment for Adolescents With Sports Related Concussion N/A
Recruiting NCT02777060 - Exploring the Effectiveness of Sensor-based Balance Training on Patient Outcome Measures N/A
Completed NCT02262286 - MIND (Management of Traumatic Brain Injury Diagnosis) N/A
Completed NCT01461902 - Vasospasm in Pediatric Traumatic Brain Injury N/A
Recruiting NCT01198964 - Optimization of Human Cortical Stimulation
Active, not recruiting NCT01207050 - Effect of Rozerem on Sleep Among People With Traumatic Brain Injury Phase 4
Completed NCT01201863 - Neuroendocrine Dysfunction in Traumatic Brain Injury: Effects of Testosterone Therapy Phase 4
Completed NCT00875329 - Traumatic Brain Injury (TBI) Screening Instruments N/A
Completed NCT01035606 - Training in Goal-directed Attention Regulation for Individuals With Brain Injury N/A
Completed NCT01059890 - Cerebral Antibiotics Distribution After Acute Brain Injury Phase 1
Completed NCT00596765 - Neuropsychological Cognitive Behavioral Therapy for Patients With Acquired Brain Injury N/A
Completed NCT00571623 - Automated Chest Physiotherapy to Improve Outcomes in Neuro N/A
Completed NCT00336466 - The Erythropoietin NeuroProtective Effect: Assessment in CABG Surgery (TENPEAKS) Phase 2
Recruiting NCT05105763 - Biofeedback Gait Retraining for Stiff Knee Gait Correction N/A
Recruiting NCT02495558 - Cough Assessment in Patients With Severe Acquired Brain Injury N/A
Completed NCT02100592 - Early Verticalization in neuroICU With ERIGO: a Safety and Feasibility Study Phase 1/Phase 2
Completed NCT00797680 - Duration of Hypothermia for Neuroprotection After Pediatric Cardiac Arrest Phase 2
Completed NCT00018499 - Genotype Influence on Recovery After Traumatic Brain Injury N/A
Recruiting NCT02567201 - Electrophysiological Evaluation of Voluntary Attention N/A
Withdrawn NCT05581927 - Whole-Body Hypothermia for Neonates With Hypoxic-Ischemic Encephalopathy(HIE) N/A