Clinical Trials Logo

Brain Injuries, Traumatic clinical trials

View clinical trials related to Brain Injuries, Traumatic.

Filter by:

NCT ID: NCT03698838 Terminated - Epilepsy Clinical Trials

Myelin Imaging Changes In Patients With Neurosurgical Diseases

McDESPOT
Start date: February 12, 2019
Phase:
Study type: Observational

Investigate myelin alterations in patients with neurosurgical diseases

NCT ID: NCT03698747 Terminated - Clinical trials for Traumatic Brain Injury

Myelin Imaging in Concussed High School Football Players

Start date: September 4, 2018
Phase:
Study type: Observational

Investigate myelin alterations in high school football players with mTBI

NCT ID: NCT03658135 Terminated - Clinical trials for Nonfluent Aphasia, Progressive

BIIB092 in Primary Tauopathies: CBS, nfvPPA, sMAPT, and TES

TauBasket
Start date: September 12, 2018
Phase: Phase 1
Study type: Interventional

A Phase 1b, Randomized, Double-Blind, Placebo-Controlled, Parallel Cohort Safety, Tolerability, Pharmacokinetics, Pharmacodynamics and Preliminary Efficacy Study of Intravenously Infused BIIB092 in Patients with Four Different Primary Tauopathy Syndromes

NCT ID: NCT03529799 Terminated - Clinical trials for Mild Traumatic Brain Injury

Disparity Driven Vergence in Mild Traumatic Brain Injury (mTBI)

Start date: April 20, 2018
Phase: N/A
Study type: Interventional

This study aims to determine the validity and safety of disparity driven vergence using a portable goggle system (I-PAS) using a pseudorandom ternary sequence of frequencies for testing.

NCT ID: NCT03523507 Terminated - Clinical trials for Traumatic Brain Injury

fMRI-neuronavigated rTMS Treatment for Symptoms of Depression Associated With Concussive TBI in the Military Population

Start date: July 1, 2019
Phase: N/A
Study type: Interventional

This study aims to investigate the efficacy and tolerability of fMRI-targeted repetitive transcranial magnetic stimulation (rTMS) in the treatment of depressive symptoms in service members with a history of concussive traumatic brain injury (TBI). Up to ninety participants will be randomized to active or sham treatment. Participants randomized into the active group will receive 20 sessions of left-sided dorsolateral prefrontal cortex (DLFPC) high-frequency rTMS, followed by right-sided DLFPC low-frequency rTMS. The DLPFC treatment area will be identified by using individual subject-level resting state network estimation (Hacker et al., 2013). Participants randomized into the sham treatment group will receive 20 sham treatments designed to have similar sound and tactile sensation, without producing active treatment. Participants will also be asked to complete regular follow-up evaluations for up to a total of six follow-up sessions. Those who do not respond to the treatment will have the option to receive active treatment through this study regardless of group assignment to active or sham.

NCT ID: NCT03438409 Terminated - Clinical trials for TBI (Traumatic Brain Injury)

Improving Functional Ability in Chronic TBI With Intensive Rehabilitation Robotic Gait Training

Start date: July 1, 2017
Phase: N/A
Study type: Interventional

The purpose of this study is to investigate changes in response to robotic gait training in individuals with a traumatic brain injury.

NCT ID: NCT03417492 Terminated - Clinical trials for Traumatic Brain Injury

Cerebrovascular Reactivity in American Football Players

Start date: March 1, 2018
Phase: Phase 1
Study type: Interventional

Investigators will measure cerebrovascular reactivity (CVR) using functional near-infrared spectroscopy (fNIRS) and magnetic resonance imaging (MRI) during the chronic phase after repetitive mild traumatic brain injury (rmTBI) as a biomarker of traumatic cerebrovascular injury (TCVI). We hypothesize that CVR will be decreased in patients with rmTBI and that these decreases will correlate with clinical outcomes. Furthermore, we predict that 5 week administration of a phosphodiesterase 5 (PDE5) inhibitor, sildenafil citrate, will augment CVR in patients with a history rmTBI.

NCT ID: NCT03345550 Terminated - Clinical trials for Mild Traumatic Brain Injury

OPTIMA-TBI Pilot Study

OPTIMA
Start date: September 12, 2017
Phase: Phase 2
Study type: Interventional

This is a double-blind, randomized controlled trial comparing the effect of omega-3 fatty acid versus placebo on blood biomarkers of brain injury, inflammation and neurogenesis.

NCT ID: NCT03342612 Terminated - Clinical trials for Mild Traumatic Brain Injury

Multimodal Neuroimaging Analysis After Mild Traumatic Brain Injury

CHANGE-TBI
Start date: July 18, 2016
Phase: N/A
Study type: Interventional

Mild Traumatic Brain Injury (mTBI), including concussion, is a real public health problem. Indeed mTBI might induce long-term brain disorders with increased risk of neurodegenerative diseases and the healthcare costs can be significant for both the individual and the society. However mTBI is called the "silent epidemic", because of the lack of research in this field in France as well as in the rest of the world. Most of the time, mTBI is associated with sports injuries, road traffic accidents and falls. The risk of neurodegenerative diseases is significantly increased with the repetition of mTBI, which may have a cumulative effect. In this context, playing football (or 'soccer') is associated with a high risk of concussion and with frequent head-ball contacts which are repeated during the training and matches. Moreover, football is the most popular team sport in the world, with more than 265 million players. The long-term impact of "heading" in football is still debated in the literature. Nevertheless, several studies suggest the possible emergence of early neurocognitive disorders. Otherwise, while mTBI is usually characterized by normal brain images using traditional neuroimaging techniques, microscopic anatomical changes might be detectable by new neuroimaging techniques. According to recent studies, cognitive dysfunctions could be based on these microstructural changes in the gray matter and white matter, secondary to the primary mechanical injury. Studies that have examined the structural changes in the brain white matter in football players are rare and lack of evidence regarding the consequences of accumulated brain impacts explains the lack of preventive measures in this sport. In addition, post-traumatic secondary lesions cause functional alterations of the neurovascular unit and its effect on cerebral perfusion may play a crucial role, which has never been yet explored in humans over the long term. In this research, the investigators will develop a unique multi-modal neuroimaging protocols to assess brain changes after minor head trauma and over the time. Investigators want to perform magnetic resonance imaging (MRI) to assess cerebral blood flow using Arteria Spin Labelling (ASL), structural changes using Diffusion Tensor Imaging (DTI), susceptibility weighted imaging (SWI), and functional changes using BOLD resting-functional MRI.

NCT ID: NCT03339037 Terminated - Clinical trials for Traumatic Brain Injury

Hyperbaric Oxygen Therapy Effect on Post Concussion Syndrome in Children

TBIPED
Start date: November 1, 2017
Phase: N/A
Study type: Interventional

Due its high incidence, mTBI and its consequences of PPCS are a major public health issue. There is no consensus regarding the treatment of PPCS in pediatrics. Relying on its results in adults, HBOT offers a promising new direction of treatment, which targets the basic pathological processes responsible for post-concussion symptoms. The effect of hyperbaric oxygen therapy in pediatric TBI has never been evaluated. The aim of the current study is to evaluate in a prospective cross-over, randomized study, the effect of HBOT on children with PPCS due to mild TBI.