Clinical Trials Logo

Clinical Trial Summary

While the exercise responses are classically described at the cardiorespiratory and muscle levels, recent data suggest that the brain is also significantly stressed by exercise and may even participate to performance limitation. In hypoxia in particular, cerebral responses to exercise may be altered and promote performance reduction during endurance exercise. In the present study, the investigators used innovative approaches to assess cerebral perturbations associated with exercise in hypoxia.


Clinical Trial Description

In the classical paradigm of exercise physiology, cardio-respiratory capacity and muscle fatigue are though to set the limit of exercise tolerance. However, there are experimental situations where it is not possible to explain exercise performance limitation using this classical paradigm, and it is therefore necessary to look for an alternative. Recent investigations highlight changes associated with exercise in the brain, e.g. changes in cerebral perfusion, cerebral oxygenation and neuron excitability. Also, several results suggest that in some conditions, the central nervous system fails to drive the motoneurons adequately, i.e. the so called central fatigue. However, the phenomenon of central limitation to exercise and its underlying neurophysiological mechanisms are still to clarify. Cerebral metabolism and neurohumoral responses during fatiguing exercise are therefore to investigate in order to propose a new paradigm able to explain exercise limitation. Among the conditions where the classical paradigm of exercise performance limitation does not appear to suit the actual observations, exercise under hypoxic environment appears to be particularly challenging. Some data suggest indeed that the cerebral response to exercise may be substantially modified in hypoxia compared to normoxia.

Hence, in the present project, the investigators aim to evaluate the effect of hypoxia on brain adaptation to exercise in healthy human. In particular, the objective is to assess the brain neurophysiological response to a fatiguing exercise, including cerebral perfusion and oxygenation, cerebral activation, cortical excitability as well as the resultant motor command while inhaling normoxic or hypoxic gas mixtures. To fulfil these objectives, complementary methodological approaches will be used during exercise both normoxic and hypoxic conditions: functional magnetic resonance imaging (fMRI) will be used to evaluate cerebral activation, the perfusion imaging arterial spin labelling (ASL) nuclear magnetic resonance method will assess regional cerebral perfusion, near infrared spectroscopy (NIRS) will allow measurement of cerebral oxygenation, measurement of motor evoked potential in response to transcranial magnetic stimulation (TMS) will assess the cortical excitability, measurement of the level of central activation (assessed by TMS) and the electromyographic (EMG) signals will evaluate the motor command. Moreover, to account for the effect of the muscle mass involved during exercise and the duration of hypoxic exposure, brain adaptation to exercise in hypoxia will be assessed for motor task involving small (thumb adduction) or large (knee extension, cycle ergometry) muscle groups as well as for acute (<1 hour) or prolonged hypoxic exposure (several hours: 6 hours). This multi-technical approach will be possible through this collaborative project between three partners experts in brain function investigation and exercise physiology (Institut Fédératif de Recherche 'RMN Biomédical et Neurosciences' Joseph Fourier University and University Hospital, Grenoble; 'Exercise Physiology' Laboratory, University Hospital, St Etienne; 'Motor Efficiency and Deficiency Laboratory', Montpellier I University, Montpellier).

The investigators hypothesise that hypoxia would enhance the cerebral perturbation associated with a given fatiguing exercise, i.e. would induce greater reduction in cerebral blood and cerebral oxygenation, greater reduction in cortical excitability and central activation as well as larger reduction in central command, and this particularly when a large muscle mass is involved as well as when hypoxic exposure is prolonged.

This project aims to renew our vision of the limitation of human exercise performance as well as our understanding of exercise tolerance under hypoxemic conditions. The later is relevant for sport and altitude medicine dealing with exercise and altitude tolerance, as well as for diseases characterised by hypoxemia and exercise intolerance such as respiratory diseases like chronic obstructive pulmonary diseases for example. ;


Study Design

Intervention Model: Single Group Assignment, Masking: Single Blind (Subject), Primary Purpose: Basic Science


Related Conditions & MeSH terms


NCT number NCT01614119
Study type Interventional
Source University Hospital, Grenoble
Contact
Status Completed
Phase N/A
Start date June 2010
Completion date July 2011

See also
  Status Clinical Trial Phase
Recruiting NCT04498598 - Structural Modification In Supraglottic Airway Device N/A
Completed NCT05532670 - N600X Low Saturation Accuracy Validation
Enrolling by invitation NCT04106401 - Intravascular Volumes in Hypoxia During Antarctic Confinement N/A
Recruiting NCT05883137 - High-flow Nasal Oxygenation for Apnoeic Oxygenation During Intubation of the Critically Ill
Not yet recruiting NCT05817448 - Hypoxia-induced Autophagy in the Pathogenesis of MAP
Recruiting NCT02661152 - DAHANCA 30: A Randomized Non-inferiority Trial of Hypoxia-profile Guided Hypoxic Modification of Radiotherapy of HNSCC. Phase 3
Terminated NCT02801162 - Evaluation of Accuracy and Precision of a New Arterial Blood Gas Analysis System Blood in Comparison With the Reference Standard N/A
Completed NCT02943863 - Regional Ventilation During High Flow Nasal Cannula and Conventional Nasal Cannula in Patients With Hypoxia N/A
Not yet recruiting NCT02201875 - Intrinsic Periodic Pattern of Breathing N/A
Completed NCT01922401 - Inverse Ratio Ventilation on Bariatric Operation N/A
Completed NCT02105298 - Effect of Volume and Type of Fluid on Postoperative Incidence of Respiratory Complications and Outcome (CRC-Study) N/A
Active, not recruiting NCT01681238 - Goal-directed Therapy in High-risk Surgery N/A
Completed NCT01463527 - Using Capnography to Reduce Hypoxia During Pediatric Sedation N/A
Completed NCT01507623 - Value of Capnography During Nurse Administered Propofol Sedation (NAPS) N/A
Withdrawn NCT00638040 - The Gene Expression Studies of the Role of Tumor Microenvironments in Tumor Progression N/A
Active, not recruiting NCT06097754 - Intermittent Exogenous Ketosis (IEK) at High Altitude N/A
Completed NCT04589923 - The VISION-Acute Study
Completed NCT05044585 - Evaluation of RDS MultiSense® in Desaturation Analysis in Healthy Volunteers N/A
Completed NCT03659513 - The Effect of ECMO on the Pharmacokinetics of the Drugs and Their Clinical Efficacy
Completed NCT03221387 - Sleep and Daytime Use of Humidified Nasal High-flow Oxygen in COPD Outpatients N/A