Clinical Trials Logo

Body Temperature Changes clinical trials

View clinical trials related to Body Temperature Changes.

Filter by:
  • Completed  
  • Page 1 ·  Next »

NCT ID: NCT06169098 Completed - Clinical trials for Temperature Change, Body

Changes in Lumbar Region Temperature During Auricular Acupressure at Kidney Point

Start date: December 14, 2023
Phase: N/A
Study type: Interventional

In Traditional Medicine, auricular acupressure (AA) is one of the non-pharmacological treatment methods commonly utilized due to its safety and convenience. AA involves the application of a taped seed of Vaccaria (with a diameter of 2mm) on specific ear acupoints to manage various disorders. Among these, chronic lower back pain is prevalent. According to Traditional Medicine, the Kidney point is selected for this condition due to the belief that "The lumbar region is the house of the Kidneys". However, evidence supporting this correlation is still lacking. In this study, the aim is to assess the relationship between the Kidney point and the lumbar region by monitoring changes in skin temperature through the application of AA on this acupoint.

NCT ID: NCT06065332 Completed - Clinical trials for Temperature Change, Body

Post-Procedural Biotech Cellulose Mask

Start date: November 7, 2022
Phase: N/A
Study type: Interventional

Background: There are many post-procedural treatments touted to improve comfort and decrease downtime, but very few prospective randomized studies. Aims: To analyze the safety and efficacy of a post-procedural biotech cellulose mask Patients/Method: Fifteen patients undergoing either a microneedling with radiofrequency (n=5), non-ablative fractional (n=5), or full erbium;YAG resurfacing (n=5) treatment were randomized to receive a Velez biotech cellulose mask on one side of the face for 30 minutes after the procedure and for two hours a day until healed. Canfield Visia photos and thermal photographs were taken 30 minutes after the procedure and daily until healed. The investigator and blind evaluators reviewed the photos and subjects answered daily questionnaires.

NCT ID: NCT05963529 Completed - Clinical trials for Temperature Change, Body

Validity of Humidity Ramp Protocols for Identifying Limits of Survivability in Heat-exposed Persons

Start date: July 14, 2023
Phase: N/A
Study type: Interventional

The global populace is at growing risk of heat-related illness due to climate change and accompanying increases in the intensity and regularity of extremely hot temperatures. In heat-exposed persons, heat gain from the environment and metabolism initially exceeds the rate of heat dissipation from the skin. Heat is stored in the body, causing core and skin temperatures to rise, which in turn triggers autonomically mediated elevations in cutaneous blood flow and sweating to facilitate heat loss. If conditions are compensable, heat loss increases until it balances total heat gain. At this point, the rate of heat storage falls to zero (i.e., heat balance is achieved) and body temperature stabilizes, albeit at a level elevated from thermoneutral conditions. If, however, the maximal achievable rate of heat dissipation is insufficient to offset heat gain, conditions are uncompensable, and prolonged exposure will cause a continual rise in core temperature that can compromise health if left unchecked. The environmental limits of compensability (i.e., the temperatures/humidities above which heat balance can not be maintained) are therefore an important determinant of survival during prolonged heat exposure. Evaluating this limit and how it can be modified (e.g., by behavior or individual factors like age or sex) is an increasingly important and active field of study. Contemporary evaluations of the environmental limits of compensability utilize "ramping protocols" in which participants are exposed to increasing levels of temperature or humidity (in 5-10 min stages) while core temperature is monitored. It is generally observed that core temperature is relatively stable (or rises slightly) in the early stages of exposure but undergoes an abrupt and rapid increase as heat stress becomes more severe. The conditions (e.g., wet-bulb temperature or wet-bulb globe temperature) at this "inflection point" are taken as the limits of compensability. That is, it is assumed that inflection corresponds to the demarcation point, below which core temperature would remain stable for prolonged periods (theoretically indefinitely if hydration is maintained) but above which heat loss is insufficient to offset heat gain, causing core temperature to rise continuously. Despite the increasing use of these protocols, no study has clearly demonstrated their validity for identifying the environmental limits of compensability. The goal of this project is therefore to assess the validity of ramping protocols for determining the ambient conditions above which thermal compensation is not possible. Enrolled participants will complete four experimental trials in a climate-controlled chamber: one ramping protocol followed by three randomized fixed-condition exposures. In the ramping protocol, participants will rest in 42°C with 28% relative humidity (RH) for 70 min, after which RH will be increased 3% every 10 min until 70% RH is achieved. The core (esophageal) temperature inflection point will be determined. For the fixed-condition exposures, participants will rest in i) 42°C with RH ~5% below their individual inflection point (below-inflection condition), ii) 42°C with RH ~5% above their individual inflection point (above-inflection condition), and iii) 26°C with 45% RH (control condition). Comparing the rate of change in esophageal temperature between each fixed-condition exposure will provide important insight into the validity of ramping protocols for identifying the limits of compensability.

NCT ID: NCT05705206 Completed - Pediatric ALL Clinical Trials

Feasibility and Accuracy of Core Temperature Measurements Using the Esophageal Temperature Probe Inserted Through the Gastric Lumen of Supraglottic Airway Device in Pediatrics

Start date: March 25, 2021
Phase:
Study type: Observational [Patient Registry]

In pediatric patients, the accuracy of body temperature measured with an esophageal temperature probe placed through the gastric lumen of the supraglottic airway device is investigated.

NCT ID: NCT05552599 Completed - Hypothermia Clinical Trials

Body Temperature Changes and Early Postoperatıve Pressure Sore

Start date: March 3, 2018
Phase: N/A
Study type: Interventional

This study aims to determine effect of body temperature changes during total knee arthroplasty surgery on early postoperative pressure sore formation.

NCT ID: NCT05355116 Completed - Clinical trials for Temperature Change, Body

Different Cryocompression Devices and Skin Temperature of the Knee

Start date: April 20, 2022
Phase: N/A
Study type: Interventional

Cryotherapy after surgery is widely utilised and has numerous practical applications for post-operative rehabilitation. Previous research has suggested that during cold therapy, the skin temperature of the knee should be reduced to 10-15°C to maximise the therapeutic benefits of cooling while avoiding the risk of cold injuries such as nerve damage and frostbite (Wilke and Weiner, 2003; Bleakley, McDonough and MacAuley, 2004). However, a recent study noted that where cryocompression devices have previously been used to reduce the skin temperature <10°C, no complications relating to the device have been reported, suggesting that the risk to the user at these lower temperatures is minimal (Bellon et al., 2019). The temperature range at which a cryocompression device should be set in order to achieve a skin temperature within the therapeutic range of 10-15°C is unknown. Furthermore, there is evidence to suggest that the temperature setting of the device does not equal that to which the skin is reduced (Selfe et al., 2009). Therefore, it is not sufficient to assume that the temperature setting of a cryocompression device accurately reflects skin temperature. Modern cryotherapy devices often consist of some sort of cuff that can be wrapped around the knee, with a connecting tube to a central unit that supplies and circulates ice-water to and from the cuff in order to cool the intended body part. Such devices offer differing levels of control over the temperature of the ice-water as it leaves the central unit, but nothing is known about how this correlates to the skin temperatures that are achieved during a cryotherapy treatment. The aim of this study is to determine the ability of five different cryocompression.devices to effectively lower the skin temperature of the treatment area to within the therapeutic range.

NCT ID: NCT05295836 Completed - Clinical trials for Antioxidative Stress

Effects of Acute Glycerol Ingestion on Performance, Metabolic and Biochemical Markers in International Athletes

Start date: February 10, 2022
Phase: N/A
Study type: Interventional

This clinical study evaluates the acute effect of glycerol ingestion on performance (power output), weight, urine specific gravity, biochemical (antioxidants and lactate) and metabolic (indirect calorimetry) markers in international athletes in hot conditions. The investigators hypothesized that acute glycerol ingestion can prevent performance loss (power generated at submaximal intensity) in hot conditions. To justify this hypothesis, the investigators will measure the aforementioned markers, which could establish a cause-effect relationship between acute glycerol intake and decreased performance loss in hot conditions.

NCT ID: NCT05179681 Completed - Clinical trials for Body Temperature Changes

High-Flow Oxygen Preserve Intraoperative Body Temperature

Start date: January 29, 2018
Phase:
Study type: Observational

Background: Hypothermia would increase the risk of bleeding, infection, cardiac complications and delay recovery. The transnasal humidified rapid-insufflation ventilatory exchange (THRIVE) could not only provide the larger oxygen preserve but also humidified high flow. However, Objectives: We wanted to investigated whether the humidified high flow of THRIVE would affect perioperative body temperature (BT). Patients and methods: We reviewed the medical records of adult patients undergoing non-intubated video-assisted thoracic surgery (NIVATS) have been retrospective reviewed. All patients have received force air warming. Multiple linear regression analysis was used to determine which factors were associated with BT loss. Expected result: In patients receiving NIVATS under force air warming, the use of THRIVE may provide more efficiently BT preserve, although the patients with oxygen mask could have acceptable BT preservation. The more BT loss is associated with the advanced age and higher BMI level. The anesthetic duration is not associated with the BT loss.

NCT ID: NCT05140707 Completed - Pain Clinical Trials

Effect of Virtual Reality on Pain, Anxiety, and Vital Signs of the Patients Undergoing Port Catheter Implantation

Start date: September 1, 2019
Phase: N/A
Study type: Interventional

This study aimed to determine the effect of virtual reality on pain, anxiety, and vital signs of oncology patients undergoing port catheter implantation. The study was carried out with 139 participants (69 intervention, 70 control) between September 2019 and January 2020. A patient identification form, state anxiety inventory, a table for vital signs, and a visual analog scale for pain severity were used for the data collection. Data were collected from the patients before, during, and after the implantation. In the intervention group, a virtual reality device, movies, and relaxing music were provided to the patients.

NCT ID: NCT05136482 Completed - Clinical trials for Temperature Change, Body

Skin Temperature Changes When Using a Cryocompression Device

Start date: November 10, 2021
Phase: N/A
Study type: Interventional

Cryotherapy after surgery is widely utilised and has numerous practical applications for post-operative rehabilitation. Previous research has suggested that during cold therapy, the skin temperature of the knee should be reduced to 10-15°C to maximise the therapeutic benefits of cooling while avoiding the risk of cold injuries such as nerve damage and frostbite (Wilke and Weiner, 2003; Bleakley, McDonough and MacAuley, 2004). The temperature range at which a device cryocompression device should be set in order to achieve a skin temperature within the therapeutic range of 10-15°C is unknown. Furthermore, there is evidence to suggest that the temperature of the device does not equal that to which the skin is reduced, plus different devices do not achieve the same reduction in skin temperature despite the ice-water within the knee sleeve being maintained at similar temperatures (Selfe et al., 2009). Therefore, it is not sufficient to assume that the temperature setting of a cryo-compression device reflects the skin temperature achieved. The aim of this study is to determine which temperature of ice-water flowing through a Physiolab S1 cryocompression device is able to reduce skin temperature around the knee to within the previously stated therapeutic range.