Sepsis Clinical Trial
Official title:
Optimizing Clinical Use of Polymyxin B: Teaching an Old Drug to Treat Superbugs
Polymyxin B is already being used extensively in the USA and other parts of the world; its use is likely to rapidly increase due to the greater burden of infections caused by MDR Gram-negative bacteria and the growing awareness of the limitations inherent in the clinical pharmacology of CMS/colistin. Cross resistance exists between the two polymyxins and thus both must be dosed optimally; but the recently generated scientifically-based dosage regimens for CMS/colistin cannot be extrapolated to polymyxin B. It is essential that an adequately powered study is conducted to define the clinical PK/PD/TD relationships of polymyxin B and identify, using next-generation proteomics, biomarkers for early detection of kidney injury. This will allow the development of scientifically-based dosage regimens for various categories of patients and an adaptive feedback control clinical tool for optimized dosing of polymyxin B in future individual patients.
Multidrug-resistant (MDR) Gram-negative 'superbugs' are rapidly spreading around the world, and polymyxin B and colistin (polymyxin E) are often the only effective antibiotics. Since polymyxin B was released in the 1950s, its pharmacokinetics, pharmacodynamics, toxicodynamics (PK/PD/TD) have never been defined. Recent pharmacological research on polymyxins has predominantly focused on colistin methanesulfonate (CMS, an inactive prodrug of colistin) and demonstrates that CMS has significant limitations. Thus, polymyxin B is increasingly being viewed as the preferred polymyxin. Unfortunately, recently developed scientifically-based dosing recommendations for CMS cannot and should not be applied to polymyxin B, as the latter is administered as its active entity. Therefore, it is essential to determine the PK/PD/TD of polymyxin B in critically-ill patients, refine optimal dosage regimens, and develop the user-friendly adaptive feedback control (AFC) clinical tool. The Specific Aims are: 1. To develop a population PK model for polymyxin B; 2. To investigate relationships between the PK of polymyxin B, duration of therapy and patient characteristics, with the development and timing of nephrotoxicity; and to use next-generation proteomics to identify the most predictive biomarker(s) of polymyxin B associated nephrotoxicity; and to develop the population PK/TD model; 3. To establish the relationships between polymyxin B PK, bacterial susceptibility and patient characteristics, with the probability of attaining and time to achieving clinical and bacteriological outcomes; and 4. To employ the models from Aims 1-3 and Monte Carlo simulation to develop scientifically-based dosage regimens of polymyxin B and to develop an AFC algorithm for future individual patients. Research Design: Patients being treated with intravenous polymyxin B will be identified at three clinical sites in the USA and one in Singapore. Patients (n = 250) will have blood collected at various times surrounding a dose of polymyxin B between days 1 and 5 of therapy. Development of nephrotoxicity, clinical response, and bacteriological response will be examined. Total and free plasma concentrations of polymyxin B will be determined. Bacterial isolates will be examined for the emergence of polymyxin resistance. The relationships between polymyxin B PK, PD and TD end-points (e.g. clinical and bacteriological responses, development of toxicity and resistance) will be assessed using pharmacometric analyses. Finally, the obtained information will be used to apply Monte Carlo simulation to examine the impact of various patient characteristics and other factors on polymyxin B PK, PD and TD, in order to establish optimal dosage regimens and AFC algorithms for individual critically-ill patients. Significance: No new antibiotics will be available for Gram-negative 'superbugs' for many years. This landmark multicenter study will provide essential information for optimizing polymyxin B use in critically-ill patients, while minimizing resistance and toxicity. This proposal aligns perfectly with the NIAID priority "To teach old drugs new tricks" and the recent Executive Order of the White House to combat antibiotic resistance. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT05095324 -
The Biomarker Prediction Model of Septic Risk in Infected Patients
|
||
Completed |
NCT02714595 -
Study of Cefiderocol (S-649266) or Best Available Therapy for the Treatment of Severe Infections Caused by Carbapenem-resistant Gram-negative Pathogens
|
Phase 3 | |
Completed |
NCT03644030 -
Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
|
||
Completed |
NCT02867267 -
The Efficacy and Safety of Ta1 for Sepsis
|
Phase 3 | |
Completed |
NCT04804306 -
Sepsis Post Market Clinical Utility Simple Endpoint Study - HUMC
|
||
Recruiting |
NCT05578196 -
Fecal Microbial Transplantation in Critically Ill Patients With Severe Infections.
|
N/A | |
Terminated |
NCT04117568 -
The Role of Emergency Neutrophils and Glycans in Postoperative and Septic Patients
|
||
Completed |
NCT03550794 -
Thiamine as a Renal Protective Agent in Septic Shock
|
Phase 2 | |
Completed |
NCT04332861 -
Evaluation of Infection in Obstructing Urolithiasis
|
||
Completed |
NCT04227652 -
Control of Fever in Septic Patients
|
N/A | |
Enrolling by invitation |
NCT05052203 -
Researching the Effects of Sepsis on Quality Of Life, Vitality, Epigenome and Gene Expression During RecoverY From Sepsis
|
||
Terminated |
NCT03335124 -
The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock
|
Phase 4 | |
Recruiting |
NCT04005001 -
Machine Learning Sepsis Alert Notification Using Clinical Data
|
Phase 2 | |
Completed |
NCT03258684 -
Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Sepsis and Septic Shock
|
N/A | |
Recruiting |
NCT05217836 -
Iron Metabolism Disorders in Patients With Sepsis or Septic Shock.
|
||
Completed |
NCT05018546 -
Safety and Efficacy of Different Irrigation System in Retrograde Intrarenal Surgery
|
N/A | |
Completed |
NCT03295825 -
Heparin Binding Protein in Early Sepsis Diagnosis
|
N/A | |
Not yet recruiting |
NCT06045130 -
PUFAs in Preterm Infants
|
||
Not yet recruiting |
NCT05361135 -
18-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in S. Aureus Bacteraemia
|
N/A | |
Not yet recruiting |
NCT05443854 -
Impact of Aminoglycosides-based Antibiotics Combination and Protective Isolation on Outcomes in Critically-ill Neutropenic Patients With Sepsis: (Combination-Lock01)
|
Phase 3 |