Clinical Trials Logo

Blast Crisis clinical trials

View clinical trials related to Blast Crisis.

Filter by:

NCT ID: NCT02455024 Terminated - Clinical trials for Myeloid Leukemia, Chronic-Phase, Accelerated-Phase, Blast-Phase, Ph+ALL

An Observational Registry to Evaluate the Incidence of and Risk Factors for Vascular Occlusive Events Associated With ICLUSIG®

OMNI
Start date: March 2, 2018
Phase:
Study type: Observational

This is an observational registry to further characterize the safety profile of patients with chronic myeloid leukemia in the chronic phase (CP-CML), accelerated phase (AP-CML), blast phase (BP-CML), or Ph+ALL treated with Iclusig (ponatinib) in routine clinical practice in the US. The registry is focused on analysis of vascular occlusive events.

NCT ID: NCT02381548 Terminated - Clinical trials for Acute Myeloid Leukemia

Phase I Trial of AZD1775 and Belinostat in Treating Patients With Relapsed or Refractory Myeloid Malignancies or Untreated Acute Myeloid Leukemia

Start date: August 18, 2015
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of WEE1 inhibitor AZD1775 and belinostat when given together in treating patients with myeloid malignancies that have returned after a period of improvement or have not responded to previous treatment or patients with untreated acute myeloid leukemia. WEE1 inhibitor AZD1775 and belinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02311998 Completed - Clinical trials for Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive

Phase I/II Study of Bosutinib in Combination With Inotuzumab Ozogamicin in CD22-positive PC Positive ALL and CML

Start date: April 16, 2015
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of bosutinib when given together with inotuzumab ozogamicin and to see how well it works in treating patients with acute lymphoblastic leukemia or chronic myeloid leukemia that has come back or does not respond to treatment. Bosutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotoxins, such as inotuzumab ozogamicin, are antibodies linked to a toxic substance and may help find cancer cells that express CD22 and kill them without harming normal cells. Giving bosutinib together with inotuzumab ozogamicin may be a better treatment for acute lymphoblastic leukemia or chronic myeloid leukemia.

NCT ID: NCT02220985 Active, not recruiting - Clinical trials for Refractory Acute Myeloid Leukemia

Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts From HLA-Matched Related and Unrelated Donors in Preventing GVHD

Start date: February 3, 2015
Phase: Phase 2
Study type: Interventional

This phase II trial is for patients with acute lymphocytic leukemia, acute myeloid leukemia, myelodysplastic syndrome or chronic myeloid leukemia who have been referred for a peripheral blood stem cell transplantation to treat their cancer. In these transplants, chemotherapy and total-body radiotherapy ('conditioning') are used to kill residual leukemia cells and the patient's normal blood cells, especially immune cells that could reject the donor cells. Following the chemo/radiotherapy, blood stem cells from the donor are infused. These stem cells will grow and eventually replace the patient's original blood system, including red cells that carry oxygen to our tissues, platelets that stop bleeding from damaged vessels, and multiple types of immune-system white blood cells that fight infections. Mature donor immune cells, especially a type of immune cell called T lymphocytes (or T cells) are transferred along with these blood-forming stem cells. T cells are a major part of the curative power of transplantation because they can attack leukemia cells that have survived the chemo/radiation therapy and also help to fight infections after transplantation. However, donor T cells can also attack a patient's healthy tissues in an often-dangerous condition known as Graft-Versus-Host-Disease (GVHD). Drugs that suppress immune cells are used to decrease the severity of GVHD; however, they are incompletely effective and prolonged immunosuppression used to prevent and treat GVHD significantly increases the risk of serious infections. Removing all donor T cells from the transplant graft can prevent GVHD, but doing so also profoundly delays infection-fighting immune reconstitution and eliminates the possibility that donor immune cells will kill residual leukemia cells. Work in animal models found that depleting a type of T cell, called naïve T cells or T cells that have never responded to an infection, can diminish GVHD while at least in part preserving some of the benefits of donor T cells including resistance to infection and the ability to kill leukemia cells. This clinical trial studies how well the selective removal of naïve T cells works in preventing GVHD after peripheral blood stem cell transplants. This study will include patients conditioned with high or medium intensity chemo/radiotherapy who can receive donor grafts from related or unrelated donors.

NCT ID: NCT02115295 Recruiting - Clinical trials for Acute Myeloid Leukemia

Cladribine, Idarubicin, Cytarabine, and Venetoclax in Treating Patients With Acute Myeloid Leukemia, High-Risk Myelodysplastic Syndrome, or Blastic Phase Chronic Myeloid Leukemia

Start date: May 19, 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well cladribine, idarubicin, cytarabine, and venetoclax work in patients with acute myeloid leukemia, high-risk myelodysplastic syndrome, or blastic phase chronic myeloid leukemia. Drugs used in chemotherapy, such as cladribine, idarubicin, cytarabine, and venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

NCT ID: NCT02091245 Active, not recruiting - Clinical trials for Refractory Acute Lymphoblastic Leukemia (ALL)

Phase I Trial of the Selective Inhibitor of Nuclear Export, KPT-330, in Relapsed Childhood ALL and AML

Start date: March 2014
Phase: Phase 1
Study type: Interventional

This research study involves participants who have acute lymphoblastic or acute myelogenous leukemia that has relapsed or has become resistant (or refractory) to standard therapies. This research study is evaluating a drug called KPT-330. Laboratory and other studies suggest that the study drug, KPT-330, may prevent leukemia cells from growing and may lead to the destruction of leukemia cells. It is thought that KPT-330 activates cellular processes that increase the death of leukemia cells. The main goal of this study is to evaluate the side effects of KPT-330 when it is administered to children and adolescents with relapsed or refractory leukemia.

NCT ID: NCT01914484 Completed - Clinical trials for Chronic Phase Chronic Myeloid Leukemia

Phase I/II Study of Nilotinib/Ruxolitinb Therapy for TKI Resistant Ph-Leukemia

Start date: August 1, 2013
Phase: Phase 1/Phase 2
Study type: Interventional

This is the study to test combination regimen of Nilotinib and Ruxolitinib therapy for the treatment of patients with Philadelphia positive chronic myeloid leukemia (CML) or acute lymphoblastic leukemia (ALL) who is resistant to multiple tyrosine kinase inhibitor therapies with BCR-ABL kinase inhibition activity. Ruxolitinib is a tyrosine kinase inhibitor blocking alternative pathway independent of BCR-ABL mediated pathway, thus having a potential to overcome tyrosine kinase inhibitor resistance in Philadelphia positive CML or ALL patients. Phase I study will be conducted to define a recommended phase II dose (RPTD) and phase II study will examine the hypothesis that combinational approach will increase response rate of resistant CML/ALL patients, thus evaluating efficacy of the combination regimen.

NCT ID: NCT01904136 Completed - Clinical trials for Myelodysplastic Syndrome

Natural Killer Cells Before and After Donor Stem Cell Transplant in Treating Patients With Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelogenous Leukemia

Start date: April 22, 2014
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II studies the side effects and best dose of natural killer cells before and after donor stem cell transplant and to see how well they work in treating patients with acute myeloid leukemia, myelodysplastic syndrome, or chronic myelogenous leukemia. Giving chemotherapy with or without total body irradiation before a donor peripheral blood stem cell or bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

NCT ID: NCT01858740 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts in Preventing GVHD in Children

Start date: April 10, 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well T cell depleted donor peripheral blood stem cell transplant works in preventing graft-versus-host disease in younger patients with high risk hematologic malignancies. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing a subset of the T cells from the donor cells before transplant may stop this from happening.

NCT ID: NCT01849276 Terminated - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Metformin+Cytarabine for the Treatment of Relapsed/Refractory AML

Start date: March 11, 2015
Phase: Phase 1
Study type: Interventional

The purpose of the study is to determine if metformin in combination with cytarabine is safe and effective. Participants in this research study have acute myeloid leukemia (AML) that has come back after initial treatment or has not gone away with initial therapy.There is evidence that metformin directly kills leukemia cells. Laboratory data have also shown that combinations of metformin with cytarabine are more efficient than each agent alone in killing leukemia cells in the laboratory.