View clinical trials related to Blast Crisis.
Filter by:This study evaluates the use of ETC-1907206 in combination with dasatinib in certain types of blood cancers. The first phase of the study (1A) is designed to find the highest tolerated dose of ETC-1907206, while the second phase (1B) will assess the safety and tolerability of the recommended dose of ETC-1907206. ETC-1907206 has been designed to block the activity of an enzyme of the body known as Mnk kinase, which is thought to be involved in the development of a variety of cancers.
This phase I trial studies the side effects and best dose of CD4+ and CD8+ HA-1 T cell receptor (TCR) (HA-1 T TCR) T cells in treating patients with acute leukemia that persists, has come back (recurrent) or does not respond to treatment (refractory) following donor stem cell transplant. T cell receptor is a special protein on T cells that helps them recognize proteins on other cells including leukemia. HA-1 is a protein that is present on the surface of some peoples' blood cells, including leukemia. HA-1 T cell immunotherapy enables genes to be added to the donor cells to make them recognize HA-1 markers on leukemia cells.
This phase II trial studies how well blinatumomab, methotrexate, cytarabine, and ponatinib work in treating patients with Philadelphia chromosome (Ph)-positive, or BCR-ABL positive, or acute lymphoblastic leukemia that has come back or does not respond to treatment. Immunotherapy with monoclonal antibodies, such as blinatumomab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as methotrexate and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving blinatumomab, methotrexate, cytarabine, and ponatinib may work better in treating patients with acute lymphoblastic leukemia.
This phase II trial studies how well low-intensity chemotherapy and ponatinib work in treating patients with Philadelphia chromosome-positive and/or BCR-ABL positive acute lymphoblastic leukemia that may have come back or is not responding to treatment. Drugs used in chemotherapy, such as cyclophosphamide, vincristine, dexamethasone, methotrexate, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with rituximab and blinatumomab, may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Granulocyte colony stimulating factor helps the bone marrow make recover after treatment. Giving low-intensity chemotherapy, ponatinib, and blinatumomab may work better in treating patients with acute lymphoblastic leukemia.
This pilot phase I trial studies the side effects of engineered donor stem cell transplant in treating patients with hematologic malignancies. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Using T cells specially selected from donor blood in the laboratory for transplant may stop this from happening.
This phase I/II trial studies the side effects and best dose of axitinib and bosutinib and how well they work in treating patients with chronic, accelerated, or blastic phase chronic myeloid leukemia. Axitinib and bosutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
The purpose of this study is to determine the safety and tolerability of weekly intravenous (IV) administration of XmAb14045 and to determine the maximally tolerated dose (MTD) after the first dose, and then to determine the MTD after second and subsequent infusions.
This pilot phase I/II trial studies the side effects and how well sirolimus and mycophenolate mofetil work in preventing graft versus host disease (GvHD) in patients with hematologic malignancies undergoing hematopoietic stem cell transplant (HSCT). Biological therapies, such as sirolimus and mycophenolate mofetil, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Giving sirolimus and mycophenolate mofetil after hematopoietic stem cell transplant may be better in preventing graft-versus-host disease.
This phase I trial studies the side effects and best dose of anti-PR1/HLA-A2 monoclonal antibody Hu8F4 (Hu8F4) in treating patients with malignancies related to the blood (hematologic). Monoclonal antibodies, such as Hu8F4, may interfere with the ability of cancer cells to grow and spread.
Multi-center, single stage, phase II study to evaluate the efficacy and safety of Flumatinib in accelerated or blastic Phase chronic myelogenous leukemia patients.