Sarcopenia Clinical Trial
Official title:
Effects of Integrated Foot Core Strengthening With Exerciser Device on Balance Control and Walking in the Elderly With and Without Sarcopenia
In modern society with an increasing aging population, recent literature has defined sarcopenia as a significant reduced mass and function of skeletal muscle with physical limitations due to aging. Clinically and experimentally, the foot often plays a crucial role in sensorimotor control and movement performance in standing, walking, and running. Apparently, previous literature has shown that the intrinsic and extrinsic foot muscles have significantly reduced muscle morphology and muscle strength in the elderly compared to that of young healthy controls. How to effectively increase foot muscles using muscle-strengthening exercises will be a crucial issue for further research and clinical intervention in this population. The intrinsic foot muscles (IFM) are the primary local stabilizer to provide static and dynamic stability in the foot, which are part of the active and neural subsystems to constitute the foot core system. The intrinsic foot muscles (IFMs) may play a key role in supporting foot arches (e.g., the medial longitudinal arch, MLA), providing flexibility, stability, shock absorption to the foot, and partially controlling foot pronation. Due to the difficulties in teaching and learning the plantar intrinsic foot muscle (IFM) exercise, the accuracy and follow-up after learning this exercise could be questioned following this exercise program. Physiologically, the effects of integrated exercise intervention may be achieved following more than 4-week intensive exercise intervention at least. How to learn and activate this kind of exercise efficiently and effectively is a key issue for employing these exercise interventions in the elderly with and without sarcopenia. In this project, we will aim to employ the novel intrinsic foot muscle strengthening device using 3-D printing techniques and to examine the feasibility and reliability of the morphology in intrinsic and extrinsic foot muscles and foot posture before and after exercise intervention using sonographic imaging and foot posture index in the elderly with and without sarcopenia; second, we will investigate whether the immediate and persistent increase in balance control and level-walking after this therapeutic exercise with novel 3-D printing foot core exerciser.
In modern society with an increasing aging population, Asian Working Groups for Sarcopenia (AWSG) has defined sarcopenia as a significantly reduced mass and function of skeletal muscle with physical limitations due to aging. The prevalence in the globe has reported 5% - 25.7% of the elderly population and its associations are very high between daily activity limitations, physical limitations, and premature death. Clinically and experimentally, the foot often plays a crucial role in sensorimotor control and movement performance in standing, walking, and running. Apparently, previous literature has shown that the intrinsic and extrinsic foot muscles have significantly reduced muscle morphology and muscle strength in the elderly compared to that of young healthy controls. How to effectively increase foot muscles using muscle-strengthening exercises will be a crucial issue for further research and clinical intervention in this population. Anatomically, the intrinsic foot muscles (IFM) are the primary local stabilizer to provide static and dynamic stability in the foot, which are part of the active and neural subsystems to constitute the foot core system. The intrinsic foot muscles (IFMs) may play a key role in supporting foot arches (e.g. the medial longitudinal arch, MLA), providing flexibility, stability, shock absorption to the foot, and partially controlling foot pronation. Due to the difficulties in teaching and learning the plantar intrinsic foot muscle (IFM) exercise, the accuracy and follow-up after learning this exercise could be questioned following this exercise program; Physiologically, the effects of integrated exercise intervention may be achieved following more than 4-week intensive exercise intervention at least. How to learn and activate this kind of exercise efficiently and effectively is a key issue for employing these exercise interventions in the elderly with and without sarcopenia. This project consists of two main parts - first, we will aim to employ the novel intrinsic foot muscle strengthening device using 3-D printing techniques and to examine the feasibility and reliability of the morphology in intrinsic and extrinsic foot muscles and foot posture before and after exercise intervention using sonographic imaging and foot posture index in the elderly with and without sarcopenia; second, we will investigate whether the immediate and persistent increase in balance control and level-walking after this therapeutic exercise with novel 3-D printing foot core exerciser. More importantly, we elucidate important clinical evidence-based information of long-term novel therapeutic exercise intervention for clinicians and health policymakers. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT06287502 -
Efficacy of Structured Exercise-Nutritional Intervention on Sarcopenia in Patients With Osteoporosis
|
N/A | |
Recruiting |
NCT05063279 -
RELIEF - Resistance Training for Life
|
N/A | |
Completed |
NCT03644030 -
Phase Angle, Lean Body Mass Index and Tissue Edema and Immediate Outcome of Cardiac Surgery Patients
|
||
Recruiting |
NCT06143592 -
Inspiratory Muscle Training on Balance, Falls and Diaphragm Thickness in the Elderly
|
N/A | |
Terminated |
NCT04350762 -
Nutritional Supplementation in the Elderly With Weight Loss
|
N/A | |
Enrolling by invitation |
NCT05953116 -
Managing the Nutritional Needs of Older Filipino With Due Attention to Protein Nutrition and Functional Health Study
|
N/A | |
Recruiting |
NCT04028206 -
Resistance Exercise or Vibration With HMB for Sarcopenia
|
N/A | |
Enrolling by invitation |
NCT03297632 -
Improving Muscle Strength, Mass and Physical Function in Older Adults
|
N/A | |
Completed |
NCT04015479 -
Peanut Protein Supplementation to Augment Muscle Growth and Improve Markers of Muscle Quality and Health in Older Adults
|
N/A | |
Completed |
NCT03234920 -
Beta-Hydroxy-Beta-Methylbutyrate (HMB) Supplementation After Liver Transplantation
|
N/A | |
Recruiting |
NCT03998202 -
Myopenia and Mechanisms of Chemotherapy Toxicity in Older Adults With Colorectal Cancer
|
||
Recruiting |
NCT04717869 -
Identifying Modifiable PAtient Centered Therapeutics (IMPACT) Frailty
|
||
Completed |
NCT05497687 -
Strength-building Lifestyle-integrated Intervention
|
N/A | |
Completed |
NCT03119610 -
The Physiologic Effects of Intranasal Oxytocin on Sarcopenic Obesity
|
Phase 1/Phase 2 | |
Recruiting |
NCT05711095 -
The Anabolic Properties of Fortified Plant-based Protein in Older People
|
N/A | |
Recruiting |
NCT05008770 -
Trial in Elderly With Musculoskeletal Problems Due to Underlying Sarcopenia - Faeces to Unravel Gut and Inflammation Translationally
|
||
Not yet recruiting |
NCT05860556 -
Sustainable Eating Pattern to Limit Malnutrition in Older Adults
|
||
Recruiting |
NCT04522609 -
Electrostimulation of Skeletal Muscles in Patients Listed for a Heart Transplant
|
N/A | |
Recruiting |
NCT04545268 -
Prehabilitation for Cardiac Surgery in Patients With Reduced Exercise Tolerance
|
N/A | |
Recruiting |
NCT03160326 -
The QUALITY Vets Project: Muscle Quality and Kidney Disease
|