View clinical trials related to Autoimmune Diabetes.
Filter by:This is a study assessing the feasibility of using the insulin-only configuration of the iLet bionic pancreas with initiation in pump-naïve people with type 1 diabetes in a primary care practice with either in-person training and follow-up (PC-IP) or with training and follow-up via telehealth (PC-TH). As a comparison, the iLet will be initiated by an academic endocrinology practice with either in-person training and follow-up (EN-IP) or with training and follow-up via telehealth (EN-TH).
This is a pilot, interventional clinical trial to assess the effectiveness and safety of artificial pancreas (AP) using the ARG algorithm closed-loop system in a monitored 3-day period outpatient study. Once the safety of the device has been validated in the open-loop first 3-day period (continuous subcutaneous insulin infusion (CSII) plus continuous glucose monitoring (CGM)) the investigators will move the study to the second 3-day closed-loop period, without carbohydrate (CHO) counting.
Type 1 diabetes (T1D) is a complex metabolic disorder with many pathophysiological disturbances including insulin resistance (IR) and mitochondrial dysfunction which are causally related to the development of diabetic kidney disease (DKD) and which contribute to reduced life expectancy. Renal hypoxia, stemming from a potential metabolic mismatch between increased renal energy expenditure and impaired substrate utilization, is increasingly proposed as a unifying early pathway in the development of DKD. By examining the interplay between factors responsible for increased renal adenosine triphosphate (ATP) consumption and decreased ATP generation in young adults with and without T1D, this study hopes to identify novel therapeutic targets to impede the development of DKD in future trials. The investigators propose to address the specific aims in a cross-sectional study with 30 adults with T1D and 20 controls without a diagnosis of diabetes. For this protocol, participants will complete a one day study visit at Children's Hospital Colorado. Patients will undergo a Dual-energy X-Ray Absorptiometry (DXA) scan to assess body composition, renal Magnetic Resonance Imaging (MRI) to quantify renal oxygenation and perfusion, and a Positron Emission Tomography/Computed Tomography (PET/CT) scan to quantify renal O2 consumption. After the PET and MRI, participants will undergo a hyperinsulinemic-euglycemic clamp to quantify insulin sensitivity. Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) will be measured by iohexol and PAH clearances during the hyperinsulinemic-euglycemic clamp. To further investigate the mechanisms of renal damage in T1D, two optional procedures are included in the study: 1) kidney biopsy procedure and 2) induction of induced pluripotent stem cells (iPSCs) to assess morphometrics and genetic expression of renal tissue.
Over 1.25 million Americans have type 1 diabetes (T1D), increasing risk for early death from cardiorenal disease. The strongest risk factor for cardiovascular disease (CVD) and mortality in T1D is diabetic kidney disease (DKD). Current treatments, such as control of hyperglycemia and hypertension, are beneficial, but only partially protect against DKD. Hyperfiltration is common in youth with T1D, and predicts progressive DKD. Hyperfiltration is also associated with early changes in intrarenal hemodynamic function, including increased renal plasma flow (RPF) and glomerular pressure. Intrarenal hemodynamic function is strongly influenced by the renin-angiotensin-aldosterone system (RAAS), which is also considered a key player in the pathogenesis of DKD. Preliminary data demonstrate differences in intrarenal hemodynamic function and RAAS activation in early and advanced DKD in T1D. However, the pathophysiology contributing to the differences observed in RAAS activation and intrarenal hemodynamic function in T1D are poorly defined Animal research demonstrates that arginine vasopressin (AVP) acts directly to modify intrarenal hemodynamic function, but also indirectly by activating RAAS. Preliminary data suggest that elevated copeptin, a marker of AVP, which predicts DKD in T1D adults, independently of other risk factors. However, no human studies to date have examined how copeptin relates to intrarenal hemodynamic function in early DKD in T1D. A better understanding of this relationship is critical to inform development of new therapies targeting the AVP system in T1D. Accordingly, in this study, the investigators propose to define the relationship between copeptin and intrarenal hemodynamics in early stages of DKD, by studying copeptin levels, renal plasma flow, and glomerular filtration in youth (n=50) aged 12-21 y with T1D duration < 10 y.
The objective of DIAGNODE-2 is to evaluate the efficacy of Diamyd compared to Placebo, upon administration directly into a lymph node in combination with an oral vitamin D/Placebo regimen, in terms of preserving endogenous insulin secretion as measured by C-peptide.
To test the function and safety of the Medtronic Overnight Closed Loop (OCL) System in a closely monitored 12 hour overnight inpatient study. Once the safety of the device has been validated we will move the study to an outpatient diabetes camp setting. The camp setting will allow us to obtain pilot efficacy and safety data in a "real-life" environment. We plan to compare the subject control nights to the subject nights on the OCL system to assess the percent of sensor glucose readings in the target range of 70-150 mg/dl. Based on previous research, we anticipate that the use of the OCL system will contribute to a greater percentage of sensor glucose readings in the target range.