Clinical Trials Logo

Atypical Teratoid/Rhabdoid Tumor clinical trials

View clinical trials related to Atypical Teratoid/Rhabdoid Tumor.

Filter by:

NCT ID: NCT06465199 Not yet recruiting - Ewing Sarcoma Clinical Trials

Difluoromethylornithine (DFMO) and AMXT-1501 for Neuroblastoma, CNS Tumors, and Sarcomas

Start date: July 2024
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this study is to evaluate the investigational drug AMXT 1501 (a pill taken by mouth) in combination with the drug difluoromethylornithine (DFMO) for infusion administered intravenously (IV; a liquid that continuously goes into your body through a tube that has been placed during a surgery into one of your veins). An investigational drug is one that has not been approved by the U.S. Food & Drug Administration (FDA), or any other regulatory authorities around the world for use alone or in combination with any drug, for the condition or illness it is being used to treat. The goals of this part of the study are: - Establish a recommended dose of AMXT 1501 in combination with DFMO for infusion - Test the safety and tolerability of AMXT 1501 in combination with DFMO for infusion in patients with cancer - To determine the activity of study treatments chosen based on: - How each subject responds to the study treatment - How long a subject lives without their disease returning/progressing

NCT ID: NCT05952687 Withdrawn - Rhabdoid Tumor Clinical Trials

Trial of Idasanutlin and Selinexor Therapy for Children With Progressive/Relapsed AT/RT or Extra-CNS Malignant Rhabdoid Tumors

Start date: March 2024
Phase: Phase 1
Study type: Interventional

iSTAR is an open-label, multi-center, phase 1b study of oral XPO1 inhibitor selinexor and oral MDM2 inhibitor idasanutlin in children with progressive or recurrent atypical teratoid/rhabdoid tumors (AT/RT), malignant rhabdoid tumors (MRT) and synchronous/metachronous rhabdoid tumors. Primary Objectives - To determine the maximum tolerated dose (MTD) and the recommended phase 2 dose (RP2D) of combination treatment with oral idasanutlin and selinexor in children with recurrent or progressive AT/RT or MRT. - To characterize the plasma pharmacokinetics of oral idasanutlin and selinexor in children with recurrent or progressive AT/RT or MRT, to assess potential covariates to explain the inter- and intra-individual pharmacokinetic variability. Secondary Objectives - Evaluate safety of the combination treatment with oral idasanutlin and selinexor in children - Evaluate efficacy of the combination treatment of idasanutlin and selinexor as measured by objective response (partial response [PR] or complete response [CR]) rate separately in progressive/relapsed AT/RT and progressive/relapsed MRT - Estimate progression-free and overall-survival separately in progressive/relapsed AT/RT and progressive/relapsed MRT

NCT ID: NCT05934630 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

Testing Cerebrospinal Fluid for Cell-free Tumor DNA in Children, Adolescents, and Young Adults With Brain Tumors

Start date: July 12, 2023
Phase:
Study type: Observational

Recent advances in technology have allowed for the detection of cell-free DNA (cfDNA). cfDNA is tumor DNA that can be found in the fluid that surrounds the brain and spinal cord (called cerebrospinal fluid or CSF) and in the blood of patients with brain tumors. The detection of cfDNA in blood and CSF is known as a "liquid biopsy" and is non-invasive, meaning it does not require a surgery or biopsy of tumor tissue. Multiple studies in other cancer types have shown that cfDNA can be used for diagnosis, to monitor disease response to treatment, and to understand the genetic changes that occur in brain tumors over time. Study doctors hope that by studying these tests in pediatric brain tumor patients, they will be able to use liquid biopsy in place of tests that have more risks for patients, like surgery. There is no treatment provided on this study. Patients who have CSF samples taken as part of regular care will be asked to provide extra samples for this study. The study doctor will collect a minimum of one extra tube of CSF (about 1 teaspoon or 5 mL) for this study. If the patients doctor thinks it is safe, up to 2 tubes of CSF (about 4 teaspoons or up to 20 mL) may be collected. CSF will be collected through the indwelling catheter device or through a needle inserted into the lower part of the patient's spine (known as a spinal tap or lumbar puncture). A required blood sample (about ½ a teaspoon or 2 3 mL) will be collected once at the start of the study. This sample will be used to help determine changes found in the CSF. Blood will be collected from the patient's central line or arm as a part of regular care. An optional tumor tissue if obtained within 8 weeks of CSF collection will be collected if available. Similarities between changes in the DNA of the tissue that has caused the tumor to form and grow with the cfDNA from CSF will be compared. This will help understand if CSF can be used instead of tumor tissue for diagnosis. Up to 300 people will take part in this study. This study will use genetic tests that may identify changes in the genes in the CSF. The report of the somatic mutations (the mutations that are found in the tumor only) will become part of the medical record. The results of the cfDNA sequencing will be shared with the patient. The study doctor will discuss what the results mean for the patient and patient's diagnosis and treatment. There will not be any germline sequencing results reported and these will not be disclosed to the patient, patient's clinician or be recorded in patient medical record. Patient may be monitored on this study for up to 5 years.

NCT ID: NCT05835687 Recruiting - Glioblastoma Clinical Trials

Loc3CAR: Locoregional Delivery of B7-H3-CAR T Cells for Pediatric Patients With Primary CNS Tumors

Start date: April 27, 2023
Phase: Phase 1
Study type: Interventional

Loc3CAR is a Phase I clinical trial evaluating the use of autologous B7-H3-CAR T cells for participants ≤ 21 years old with primary CNS neoplasms. B7-H3-CAR T cells will be locoregionally administered via a CNS reservoir catheter. Study participants will be divided into two cohorts: cohort A with B7-H3-positive relapsed/refractory non-brainstem primary CNS tumors, and cohort B with brainstem high-grade neoplasms. Participants will receive six (6) B7-H3-CAR T cell infusions over an 8 week period. The purpose of this study is to find the maximum (highest) dose of B7-H3-CAR T cells that are safe to give patients with primary brain tumors.

NCT ID: NCT05407441 Recruiting - Chordoma Clinical Trials

Tazemetostat+Nivo/Ipi in INI1-Neg/SMARCA4-Def Tumors

Start date: August 10, 2023
Phase: Phase 1/Phase 2
Study type: Interventional

This research study involves a combination of three drugs given together as a possible treatment for malignant rhabdoid tumor, atypical teratoid rhabdoid tumor, epithelioid sarcoma, chordoma or other tumors that are deficient in one of two possible proteins, either INI-1 (SMARCB1) or SMARCA4. The names of the study drugs involved in this study are: - Tazemetostat (TAZVERIK) - Nivolumab (OPDIVO) - Ipilimumab (YERVOY)

NCT ID: NCT05286801 Recruiting - Clinical trials for Malignant Solid Neoplasm

Tiragolumab and Atezolizumab for the Treatment of Relapsed or Refractory SMARCB1 or SMARCA4 Deficient Tumors

Start date: November 17, 2022
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies how well tiragolumab and atezolizumab works when given to children and adults with SMARCB1 or SMARCA4 deficient tumors that have either come back (relapsed) or do not respond to therapy (refractory). SMARCB1 or SMARCA4 deficiency means that tumor cells are missing the SMARCB1 and SMARCA4 genes, seen with some aggressive cancers that are typically hard to treat. Immunotherapy with monoclonal antibodies, such as tiragolumab and atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

NCT ID: NCT04897880 Terminated - Rhabdoid Tumor Clinical Trials

A Study of Panobinostat in Pediatric Patients With Solid Tumors Including MRT/ATRT

NORTH
Start date: January 9, 2019
Phase: Phase 2
Study type: Interventional

This trial is evaluating the anti-tumor activity and side effects of panobinostat in treating patients with osteosarcoma, malignant rhabdoid tumor/atypical teratoid rhabdoid tumor (MRT/ATRT), and neuroblastoma.

NCT ID: NCT04521946 Withdrawn - Malignant Glioma Clinical Trials

Chemotherapy and Donor Stem Transplant for the Treatment of Patients With High Grade Brain Cancer

Start date: January 14, 2021
Phase: Phase 1
Study type: Interventional

This phase I trial investigates the side effects and effectiveness of chemotherapy followed by a donor (allogeneic) stem cell transplant when given to patients with high grade brain cancer. Chemotherapy drugs, such as fludarabine, thiotepa, etoposide, melphalan, and rabbit anti-thymocyte globulin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a donor stem cell transplant helps kill cancer cells in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. When the healthy stem cells from a donor are infused into a patient, they may help the patient's bone marrow make more healthy cells and platelets and may help destroy any remaining cancer cells.

NCT ID: NCT04416568 Recruiting - Epithelioid Sarcoma Clinical Trials

Study of Nivolumab and Ipilimumab in Children and Young Adults With INI1-Negative Cancers

Start date: August 14, 2020
Phase: Phase 2
Study type: Interventional

This clinical trial is studying two immunotherapy drugs (nivolumab and ipilimumab) given together as a possible treatment for INI1-negative tumors.

NCT ID: NCT04185038 Recruiting - Glioma Clinical Trials

Study of B7-H3-Specific CAR T Cell Locoregional Immunotherapy for Diffuse Intrinsic Pontine Glioma/Diffuse Midline Glioma and Recurrent or Refractory Pediatric Central Nervous System Tumors

Start date: December 11, 2019
Phase: Phase 1
Study type: Interventional

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4+ and CD8+ T cells lentivirally transduced to express a B7H3-specific chimeric antigen receptor (CAR) and EGFRt. CAR T cells are delivered via an indwelling catheter into the tumor resection cavity or ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into the tumor resection cavity or into their ventricular system, and meeting none of the exclusion criteria, will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that targets B7H3-expressing tumor cells. Patients will be assigned to one of 3 treatment arms based on location or type of their tumor. Patients with supratentorial tumors will be assigned to Arm A, and will receive their treatment into the tumor cavity. Patients with either infratentorial or metastatic/leptomeningeal tumors will be assigned to Arm B, and will have their treatment delivered into the ventricular system. The first 3 patients enrolled onto the study must be at least 15 years of age and assigned to Arm A or Arm B. Patients with DIPG will be assigned to Arm C and have their treatment delivered into the ventricular system. The patient's newly engineered T cells will be administered via the indwelling catheter for two courses. In the first course patients in Arms A and B will receive a weekly dose of CAR T cells for three weeks, followed by a week off, an examination period, and then another course of weekly doses for three weeks. Patients in Arm C will receive a dose of CAR T cells every other week for 3 weeks, followed by a week off, an examination period, and then dosing every other week for 3 weeks. Following the two courses, patients in all Arms will undergo a series of studies including MRI to evaluate the effect of the CAR T cells and may have the opportunity to continue receiving additional courses of CAR T cells if the patient has not had adverse effects and if more of their T cells are available. The hypothesis is that an adequate amount of B7H3-specific CAR T cells can be manufactured to complete two courses of treatment with 3 or 2 doses given on a weekly schedule followed by one week off in each course. The other hypothesis is that B7H3-specific CAR T cells can safely be administered through an indwelling CNS catheter or delivered directly into the brain via indwelling catheter to allow the T cells to directly interact with the tumor cells for each patient enrolled on the study. Secondary aims of the study will include evaluating CAR T cell distribution with the cerebrospinal fluid (CSF), the extent to which CAR T cells egress or traffic into the peripheral circulation or blood stream, and, if tissues samples from multiple timepoints are available, also evaluate disease response to B7-H3 CAR T cell locoregional therapy.