Clinical Trials Logo

Atypical Teratoid/Rhabdoid Tumor clinical trials

View clinical trials related to Atypical Teratoid/Rhabdoid Tumor.

Filter by:
  • Active, not recruiting  
  • Page 1

NCT ID: NCT05934630 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

Testing Cerebrospinal Fluid for Cell-free Tumor DNA in Children, Adolescents, and Young Adults With Brain Tumors

Start date: July 12, 2023
Phase:
Study type: Observational

Recent advances in technology have allowed for the detection of cell-free DNA (cfDNA). cfDNA is tumor DNA that can be found in the fluid that surrounds the brain and spinal cord (called cerebrospinal fluid or CSF) and in the blood of patients with brain tumors. The detection of cfDNA in blood and CSF is known as a "liquid biopsy" and is non-invasive, meaning it does not require a surgery or biopsy of tumor tissue. Multiple studies in other cancer types have shown that cfDNA can be used for diagnosis, to monitor disease response to treatment, and to understand the genetic changes that occur in brain tumors over time. Study doctors hope that by studying these tests in pediatric brain tumor patients, they will be able to use liquid biopsy in place of tests that have more risks for patients, like surgery. There is no treatment provided on this study. Patients who have CSF samples taken as part of regular care will be asked to provide extra samples for this study. The study doctor will collect a minimum of one extra tube of CSF (about 1 teaspoon or 5 mL) for this study. If the patients doctor thinks it is safe, up to 2 tubes of CSF (about 4 teaspoons or up to 20 mL) may be collected. CSF will be collected through the indwelling catheter device or through a needle inserted into the lower part of the patient's spine (known as a spinal tap or lumbar puncture). A required blood sample (about ½ a teaspoon or 2 3 mL) will be collected once at the start of the study. This sample will be used to help determine changes found in the CSF. Blood will be collected from the patient's central line or arm as a part of regular care. An optional tumor tissue if obtained within 8 weeks of CSF collection will be collected if available. Similarities between changes in the DNA of the tissue that has caused the tumor to form and grow with the cfDNA from CSF will be compared. This will help understand if CSF can be used instead of tumor tissue for diagnosis. Up to 300 people will take part in this study. This study will use genetic tests that may identify changes in the genes in the CSF. The report of the somatic mutations (the mutations that are found in the tumor only) will become part of the medical record. The results of the cfDNA sequencing will be shared with the patient. The study doctor will discuss what the results mean for the patient and patient's diagnosis and treatment. There will not be any germline sequencing results reported and these will not be disclosed to the patient, patient's clinician or be recorded in patient medical record. Patient may be monitored on this study for up to 5 years.

NCT ID: NCT03638167 Active, not recruiting - Glioma Clinical Trials

EGFR806-specific CAR T Cell Locoregional Immunotherapy for EGFR-positive Recurrent or Refractory Pediatric CNS Tumors

Start date: March 19, 2019
Phase: Phase 1
Study type: Interventional

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4+ and CD8+ T cells that are lentivirally transduced to express an EGFR806 specific chimeric antigen receptor (CAR) and EGFRt. CAR T cells are delivered via an indwelling catheter into the tumor cavity or the ventricular system in children and young adults with recurrent or refractory EGFR-positive CNS tumors. The primary objectives of this protocol are to evaluate the feasibility, safety, and tolerability of CNS-delivered fractionated CAR T cell infusions employing intra-patient dose escalation. Subjects with supratentorial tumors will receive sequential EGFR806-specific CAR T cells delivered into the tumor resection cavity, subjects with infratentorial tumors will receive sequential CAR T cells delivered into the fourth ventricle, and subjects with leptomeningeal disease will receive sequential CAR T cells delivered into the lateral ventricle. The secondary objectives are to assess CAR T cell distribution within the cerebrospinal fluid (CSF), the extent to which CAR T cells egress into the peripheral circulation, and EGFR expression at recurrence of initially EGFR-positive tumors. Additionally, tumor response will be evaluated by magnetic resonance imaging (MRI) and CSF cytology. The exploratory objectives are to analyze CSF specimens for biomarkers of anti-tumor CAR T cell presence and functional activity.

NCT ID: NCT03500991 Active, not recruiting - Glioma Clinical Trials

HER2-specific CAR T Cell Locoregional Immunotherapy for HER2-positive Recurrent/Refractory Pediatric CNS Tumors

Start date: July 26, 2018
Phase: Phase 1
Study type: Interventional

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4 and CD8 T cells lentivirally transduced to express a HER2-specific chimeric antigen receptor (CAR) and EGFRt, delivered by an indwelling catheter in the tumor resection cavity or ventricular system in children and young adults with recurrent or refractory HER2-positive CNS tumors. A child or young adult with a refractory or recurrent CNS tumor will have their tumor tested for HER2 expression by immunohistochemistry (IHC) at their home institution or at Seattle Children's Hospital. If the tumor is HER2 positive and the patient meets all other eligibility criteria, including having a CNS catheter placed into the tumor resection cavity or into their ventricular system, and meets none of the exclusion criteria, then they can be apheresed, meaning T cells will be collected. The T cells will then be bioengineered into a second-generation CAR T cell that targets HER2-expressing tumor cells. The patient's newly engineered T cells will then be administered via the indwelling CNS catheter for two courses. In the first course they will receive a weekly dose of CAR T cells for three weeks, followed by a week off, an examination period, and then another course of weekly doses for three weeks. Following the two courses, patient's will undergo a series of studies including MRI to evaluate the effect of the CAR T cells and may have the opportunity to continue receiving additional courses of CAR T cells if the patient has not had adverse effects and if more of their T cells are available. The hypothesis is that an adequate amount of HER2-specific CAR T cells can be manufactured to complete two courses of treatment with three doses given on a weekly schedule followed by one week off in each course. The other hypothesis is that HER-specific CAR T cells safely can be administered through an indwelling CNS catheter to allow the T cells to directly interact with the tumor cells for each patient enrolled on the study safely can be delivered directly into the brain via indwelling catheter. Secondary aims of the study will include to evaluate CAR T cell distribution with the cerebrospinal fluid (CSF), the extent to which CAR T cells egress or traffic into the peripheral circulation or blood stream, and, if tissues samples from multiple time points are available, also evaluate the degree of HER2 expression at diagnosis versus at recurrence.

NCT ID: NCT03434262 Active, not recruiting - Neoplasms Clinical Trials

SJDAWN: St. Jude Children's Research Hospital Phase 1 Study Evaluating Molecularly-Driven Doublet Therapies for Children and Young Adults With Recurrent Brain Tumors

Start date: March 5, 2018
Phase: Phase 1
Study type: Interventional

Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: - To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. - To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: - To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.

NCT ID: NCT02114229 Active, not recruiting - Clinical trials for Malignant Rhabdoid Tumor

Phase 2 Study of Alisertib Therapy for Rhabdoid Tumors

SJATRT
Start date: May 14, 2014
Phase: Phase 2
Study type: Interventional

This study incorporates alisertib, the small-molecule inhibitor of Aurora A activity, in the treatment of patients younger than 22 years of age. Patients with recurrent or refractory AT/RT or MRT will receive alisertib as a single agent. Patients with newly diagnosed AT/RT will receive alisertib as part of age- and risk-adapted chemotherapy. Radiation therapy will be given to children ≥12 months of age. Patients with AT/RT and concurrent extra-CNS MRT are eligible. Alisertib will be administered as a single agent on days 1-7 of each 21-day cycle in all recurrent patients enrolled on Stratum A. For the patients on the newly diagnosed strata (B, C or D), alisertib will be administered in sequence with chemotherapy and radiotherapy. This study has 3 primary strata: (A) children with recurrent/progressive AT/RT or extra-CNS MRT, (B) children < 36 months-old with newly diagnosed AT/RT, (C) children > 36 months old with newly diagnosed AT/RT. Children with concurrent MRT will be treated according to age and risk stratification schemes outlined for strata B and C and will have additional treatment for local control. Children with synchronous AT/RT will be treated with age and CNS risk-appropriate therapy, and also receive surgery and/or radiation therapy for local control of the non-CNS tumor. PRIMARY OBJECTIVES - To estimate the sustained objective response rate and disease stabilization in pediatric patients with recurrent or progressive AT/RT (atypical teratoid rhabdoid tumor in the CNS) (Stratum A1) treated with alisertib and to determine if the response is sufficient to merit continued investigation of alisertib in this population. - To estimate the sustained objective response rate and disease stabilization in pediatric patients with recurrent or progressive extra-CNS MRT (malignant rhabdoid tumor outside the CNS) (Stratum A2) treated with alisertib and to determine if the response is sufficient to merit continued investigation of alisertib in this population. - To estimate the 3-year PFS rate of patients with newly diagnosed AT/RT who are younger than 36 months of age at diagnosis with no metastatic disease (Stratum B1) treated with alisertib in sequence with induction and consolidation chemotherapy and radiation therapy (depending on age) and to determine if the rates are sufficient to merit continued investigation of alisertib in this population. - To estimate the 1-year PFS rate of patients with newly diagnosed AT/RT who are younger than 36 months of age at diagnosis, with metastatic disease (Stratum B2) treated with alisertib in sequence with induction and consolidation chemotherapy and to determine if the rates are sufficient to merit continued investigation of alisertib in this population. - To estimate the 3-year PFS rate of patients with newly diagnosed AT/RT who are 3 years of age or greater at diagnosis with no metastatic disease and gross total resection or near total resection (Stratum C1) treated with alisertib in sequence with radiation therapy and consolidation chemotherapy and to determine if the rates are sufficient to merit continued investigation of alisertib in this population. - To estimate the 1-year PFS rate of patients with newly diagnosed AT/RT who are 3 years of age or greater at diagnosis with metastatic or residual disease (Stratum C2) treated with alisertib in sequence with radiation therapy and consolidation chemotherapy and to determine if the rates are sufficient to merit continued investigation of alisertib in this population. - To characterize the pharmacokinetics and pharmacodynamics of alisertib in pediatric patients and to relate drug disposition to toxicity. SECONDARY OBJECTIVES - To estimate the duration of objective response and PFS in patients with recurrent/progressive AT/RT and MRT (Strata A1 and A2). - To estimate PFS and OS distributions in patients with newly diagnosed AT/RT (Strata B1, B2, B3, C1 and C2). - To describe toxicities experienced by patients treated on this trial, specifically any toxicities of alisertib when administered as a single agent or in combination with other therapy over multiple courses and toxicities related to proton or photon radiation therapy. - To describe the patterns of local and distant failure in newly diagnosed patients (Strata B1, B2, B3, C1 and C2). Local control relative to primary-site radiation therapy, with criteria for infield, marginal, or distant failure will also be reported descriptively.