View clinical trials related to Astrocytoma.
Filter by:This phase I/II trial studies the side effects and the best dose of veliparib when given together with radiation therapy and temozolomide and to see how well they work in treating younger patients newly diagnosed with diffuse pontine gliomas. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells either by killing the cells or by stopping them from dividing. Giving veliparib with radiation therapy and temozolomide may kill more tumor cells.
The study aims to optimize the treatment of elderly subjects (> 65) with anaplastic astrocytoma and glioblastoma. Current treatment policies tend to be no more than palliative. There is no consensus as to how radical the surgery should be. Involved-field radiotherapy is the treatment most likely to be accepted apart from supportive and palliative measures. The role of chemotherapy is barely defined. Study data available to date does not suggest that this patient population would benefit from combined radiochemotherapy. The aim of the study is to verify the hypothesis that first-line chemotherapy with one week on/one week off temozolomide is not inferior to extended-field radiotherapy in the first-line treatment of anaplastic astrocytoma and glioblastoma in the elderly (> 65 age group). The primary endpoint is median survival, as life expectancy is limited to several months. Secondary endpoints are response rates in both arms (CR, PR, MacDonald et al. 1990), median progression-free survival, 1-year and 2-year survival rates, definition of MGMT as molecular genetic prognostic or predictive markers, and quality of life. Theoretically, it should be possible to preserve quality of life in the first-line chemotherapy arm of the study.
This is an open-label, sequential dose exploration study of single agent AMG 595 administered in subjects with recurrent glioblastoma multiforme (GBM) and/or anaplastic astrocytomas (AA). The purpose of the study is to evaluate safety, tolerability, and pharmacokinetics (PK) of AMG 595, and also to evaluate the objective response rate in subjects receiving AMG 595. This study will be conducted in two parts. Part 1 will explore doses of AMG 595 in subjects with recurrent GBM and/or AA. Part 2 (dose expansion) will examine the MTD established in Part 1 in subjects with recurrent GBM.
This is a multicenter study evaluating the safety and tolerability of increasing doses of Toca 511, a retroviral replicating vector, injected into the resection cavity of patients with Grade III or Grade IV Gliomas who have elected to undergo surgical removal of their tumor. Approximately 6 weeks after injection of Toca 511, patients will begin an oral courses of Toca FC, an antifungal agent. These one week courses of Toca FC will be repeated during the approximately 30 week study. Two separate cohorts of patients treated with Toca 511 and Toca FC will also be evaluated with either of the following standard treatments for glioma: lomustine or bevacizumab. After completion of this study, all patients will be eligible for enrollment and encouraged to enter a long-term continuation protocol that enables additional Toca FC treatment cycles to be given, as well as permits the collection of long-term safety and survival data.
This phase II trial studies how well sunitinib malate works in treating younger patients with recurrent, refractory, or progressive malignant glioma or ependymoma. Sunitinib malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This trial studies the natural history of brain function, quality of life, and seizure control in patients with brain tumor who have undergone surgery. Learning about brain function, quality of life, and seizure control in patients with brain tumor who have undergone surgery may help doctors learn more about the disease and find better methods of treatment and on-going care.
The Primary Objectives are: - To determine the extent by which TH-302 is able to penetrate the blood brain barrier and affect tumor tissue - To assess the safety of single dose TH-302 in patients with high grade glioma undergoing surgery - To assess the safety of TH-302 in combination with bevacizumab for patients with high grade glioma - To determine the MTD and DLT(s) of TH-302 in combination with bevacizumab The Secondary Objectives are: To determine the progression-free survival with or without debulking craniotomy for patients treated with combination bevacizumab and TH-302 following recurrence on single agent bevacizumab
The best dose of radiation to be given with bevacizumab is currently unknown. This study will use higher doses of radiation with bevacizumab than have been used before. This study will test the safety of radiation given at different doses with bevacizumab to find out what effects, good and/or bad, it has on the patient and the malignant glioma or related brain cancers.
BIBF 1120 is a newly discovered compound that may stop cancer cells from growing abnormally. This drug is currently being used in treatment for other cancers in research studies and information from those other research studies suggests that this agent, BIBF 1120, may help to stop recurrent malignant glioma cells from multiplying and it may also prevent the growth of new blood vessels at the site of the tumor. In this research study, the investigators are looking to see how well BIBF 1120 works in patients with recurrent malignant gliomas.
The best treatment for recurrent cancers or those that do not respond to therapies is not known. Typically, patients with these cancers receive a combination of cancer drugs (chemotherapy), surgery, or radiation therapy. These treatments can prolong their life but may not offer a long-term cure. This study proposes using a drug called Sirolimus in combination with common chemotherapy drugs to treat patients with recurrent and refractory solid tumors. Sirolimus has been found to inhibit cell growth and to have anti-tumor activity in pediatric solid tumors in previous studies and, therefore, has the potential to increase the effectiveness of the chemotherapy drugs when given together. This study wil investigate the highest dose of Sirolimus that can be given orally with other oral chemotherapy drugs. Cohorts of 2 subjects will be started at the minimum dose. The dose will be increased in the next 2 subjects as long as there were no major reactions in the previous groups. This study will also seek to learn more about the side effects of sirolimus when used in this combination and what effects the drug has on the white cells and the immune system. Successful use of this drug will impact the cancer population greatly by providing an increased chance of survival to those with resistant or recurrent cancers.