Clinical Trials Logo

Astrocytoma clinical trials

View clinical trials related to Astrocytoma.

Filter by:

NCT ID: NCT01967758 Completed - Clinical trials for Glioblastoma Multiforme

Phase I Study of Safety and Immunogenicity of ADU-623

Start date: January 8, 2014
Phase: Phase 1
Study type: Interventional

This is a study for patients with brain tumors called astrocytic tumors. The study will enroll patients who have received standard treatment. The study will test a vaccine called ADU-623. ADU-623 has not been tested in humans before, so the goal of this study is to see if ADU-623 can be given safely to brain cancer patients and what is the better dose to give patients among the three doses that planned to be tested. This study will also evaluate the length of time before patients' cancer worsens and if ADU-623 helps patients to live longer. The study will also measure the body's immune system response to ADU-623.

NCT ID: NCT01922076 Completed - Glioblastoma Clinical Trials

Adavosertib and Local Radiation Therapy in Treating Children With Newly Diagnosed Diffuse Intrinsic Pontine Gliomas

Start date: September 3, 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and the best dose of adavosertib when given together with local radiation therapy in treating children with newly diagnosed diffuse intrinsic pontine gliomas. Adavosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays, gamma rays, neutrons, protons, or other sources to kill tumor cells and shrink tumors. Giving adavosertib with local radiation therapy may work better than local radiation therapy alone in treating diffuse intrinsic pontine gliomas.

NCT ID: NCT01833273 Completed - Clinical trials for Glioblastoma Multiform (Grade IV Astrocytoma)

Dose Evaluation Safety STudy IN Individuals With Astrocytoma Taking PolyMVA

DESSTINI_A
Start date: July 2010
Phase: Phase 1
Study type: Interventional

In order to test the investigators hypothesis that 8 teaspoons of POLYMVA is safe in a population of patients with grade IV brain astrocytoma (glioblastoma multiforme), the investigators will conduct an open-label, prospective, un-blinded study. The investigators expect that at least 70% of subjects will tolerate the supplement and complete the trial. The investigators expect no Serious Adverse Event to occur during this trial which is attributable to study compound. During this study, the investigators will also collect other qualitative data to be utilized for future double-blinded studies which will be aimed at determining whether grade IV astrocytoma patients who receive PolyMVA achieve a better quality of life during their chemo-therapeutic regimens versus grade IV astrocytoma patients who do not receive PolyMVA.

NCT ID: NCT01808820 Completed - Clinical trials for Glioblastoma Multiforme

Dendritic Cell (DC) Vaccine for Malignant Glioma and Glioblastoma

Start date: August 21, 2013
Phase: Phase 1
Study type: Interventional

The purpose of this research study is to evaluate an investigational vaccine using patent-derived dendritic cells (DC) to treat malignant glioma or glioblastoma.

NCT ID: NCT01663012 Completed - Clinical trials for Anaplastic Astrocytomas

Phase II NKTR-102 In Bevacizumab-Resistant High Grade Glioma

Start date: July 2012
Phase: Phase 2
Study type: Interventional

High Grade Gliomas, including anaplastic astrocytomas, anaplastic oligodendrogliomas and glioblastomas (GBM), are the most common and most aggressive primary brain tumors. Prognosis for patients with high-grade gliomas remains poor. The estimated median survival for patients with GBM is between 12 to 18 months. Recurrence after initial therapy with temozolomide and radiation is nearly universal. Since May 2009, the majority of patients in the US with an initial recurrence of high-grade glioma receive bevacizumab, a monoclonal antibody against vascular endothelial growth factor (VEGF), which is thought to prevent angiogenesis in these highly vascular tumors. BEV has response rates from 32-62% and has improved overall median survival in patients with recurrent high-grade gliomas1. However, the response is short lived, and nearly 100% of patients eventually progress despite bevacizumab. No chemotherapeutic agent administered following progression through bevacizumab has made a significant impact on survival. Patients progress to death within 1-5 months after resistance develops. Therefore, patients with high-grade gliomas who have progressed through bevacizumab represent a population in dire need of a feasible and tolerable treatment. NKTR-102 is a topoisomerase I inhibitor polymer conjugate that was engineered by attaching irinotecan molecules to a polyethylene glycol (PEG) polymer using a biodegradable linker. Irinotecan released from NKTR-102 following administration is further metabolized to the active metabolite, 7-ethyl-10-hydroxy-camptothecin (SN38), that causes DNA damage through inhibition of topoisomerase. The goal in designing NKTR-102 was to attenuate or eliminate some of the limiting side effects of irinotecan while improving efficacy by modifying the distribution of the agent within the body. The size and structure of NKTR-102 results in marked alteration in pharmacokinetic (PK) profile for the SN38 derived from NKTR-102 compared to that following irinotecan: the maximal plasma concentration (Cmax) is reduced 5- to 10-fold and the half-life (t1/2 ) of SN38 is increased from 2 days to approximately 50 days. This altered profile leads to constant exposure of the tumor to the active drug. In addition, the large NKTR-102 molecule does not freely pass out of intact vasculature, which may account for relatively higher concentrations of the compound and the active metabolites in tumor tissues in in vivo models, where the local vasculature may be relatively more permeable. A 145 mg/m2 dose of NKTR-102, the dose intended for use in this phase II clinical trial (and being used in the phase III clinical program), results in approximately the same plasma exposure to SN38 as a 350 mg/m2 dose of irinotecan, but exposure is protracted, resulting in continuous exposure between dosing cycles and lower Cmax. NKTR-102 was therefore developed as a new chemotherapeutic agent that may improve the clinical outcomes of patients.

NCT ID: NCT01648348 Completed - Adult Glioblastoma Clinical Trials

Bevacizumab With or Without Anti-Endoglin Monoclonal Antibody TRC105 in Treating Patients With Recurrent Glioblastoma Multiforme

Start date: November 2012
Phase: Phase 1/Phase 2
Study type: Interventional

This partially randomized phase I/II trial studies the side effects and the best dose of anti-endoglin monoclonal antibody TRC105 when given together with bevacizumab and to see how well they work in treating patients with glioblastoma multiforme that has come back. Monoclonal antibodies, such as anti-endoglin monoclonal antibody TRC105 and bevacizumab, may find tumor cells and help kill them. Giving anti-endoglin monoclonal antibody TRC105 together with bevacizumab may be an effective treatment for glioblastoma multiforme.

NCT ID: NCT01644955 Completed - Clinical trials for Recurrent Adult Brain Tumor

Carboplatin in Treating Patients With Recurrent High-Grade Gliomas

Start date: June 11, 2012
Phase: Phase 1
Study type: Interventional

This study is being done to evaluate the toxicity and safety of carboplatin administered by convection enhanced delivery into the tumor in patients with high grade glial neoplasms. This study is a dose escalating study, (the dose of the study drug is increased at set time points). Carboplatin is in a class of drugs known as platinum-containing compounds; it slows or stops the growth of cancer cells in your body. Convection enhanced delivery involves placing one or more catheters into the brain and delivering chemotherapy through those catheters directly into the brain

NCT ID: NCT01635283 Completed - Clinical trials for Recurrent Adult Brain Tumor

Vaccine for Patients With Newly Diagnosed or Recurrent Low-Grade Glioma

Start date: January 10, 2012
Phase: Phase 2
Study type: Interventional

The primary purpose of this phase II clinical trial is to determine the safety and effect on survival of patients autologous dendritic cells pulsed with autologous tumor lysate as a treatment for low-grade glioma patients. Other goals of this study are to determine if the vaccine can cause an immune response against patients' cancer cells and slow the growth of their brain tumors

NCT ID: NCT01553149 Completed - Clinical trials for Neurofibromatosis Type 1

Low-Dose or High-Dose Lenalidomide in Treating Younger Patients With Recurrent, Refractory, or Progressive Pilocytic Astrocytoma or Optic Pathway Glioma

Start date: July 5, 2012
Phase: Phase 2
Study type: Interventional

This randomized phase II trial studies how well low-dose lenalidomide works compared with high-dose lenalidomide in treating younger patients with juvenile pilocytic astrocytomas or optic nerve pathway gliomas that have come back (recurrent), have not responded to treatment (refractory), or are growing, spreading, or getting worse (progressive). Lenalidomide is classified as an immunomodulatory drug as it boosts the immune system. It has other potential anti-tumor effects, for example, it may stop the growth of tumor cells by blocking blood flow to the tumor. It is not yet known whether low-dose lenalidomide is more or less effective than high-dose lenalidomide in treating patients with juvenile pilocytic astrocytomas or optic nerve pathway gliomas.

NCT ID: NCT01522820 Completed - Glioblastoma Clinical Trials

Vaccine Therapy With or Without Sirolimus in Treating Patients With NY-ESO-1 Expressing Solid Tumors

Start date: March 2012
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best schedule of vaccine therapy with or without sirolimus in treating patients with cancer-testis antigen (NY-ESO-1) expressing solid tumors. Biological therapies, such as sirolimus, may stimulate the immune system in different ways and stop tumor cells from growing. Vaccines made from a person's white blood cells mixed with tumor proteins may help the body build an effective immune response to kill tumor cells that express NY-ESO-1. Infusing the vaccine directly into a lymph node may cause a stronger immune response and kill more tumor cells. It is not yet known whether vaccine therapy works better when given with or without sirolimus in treating solid tumors.