View clinical trials related to Astrocytoma.
Filter by:O6-méthylguanine méthyltransférase (MGMT) is the main repair gene after DNA lesion induced by Temozolomide in combination with radiation therapy of Glioblastoma (GBM) in Stupp.R et al published regimen. In preclinical models, it has been demonstrated that MGMT methylation (which is silencing the DNA repair process) is achievable by folic acid. About half of the patients with operated GBM have an un-methylated MGMT gene status and therefore a poorer prognosis. A phase-1 dose escalation study is proposed with pharmacologic doses of folinic acid in combination with temozolomide and radiotherapy of operated GBM.
This research is being done to study the safety and utility of 5-aminolevulinic acid (5-ALA) (also known as Gliolan) for identifying brain tumor tissue during surgery. The goal of this study is to determine if 5-ALA can differentiate between tumor and normal brain tissue. Sometimes, during brain surgery, the removal of tumor tissue can be difficult because the tumor can look like normal brain tissue. Studies in other countries have shown that in some brain tumors, 5-ALA can make the tumors appear brighter under ultraviolet light. This may make it easier for doctors to remove as much tumor as safely as possible from your brain. This study also hopes to see if 5-ALA can find different cell populations within the tumor that is removed and allow the researchers to better understand brain tumors. The purpose of this study is to: - Find out how well 5-ALA can separate normal brain tissue from tumor tissues AND to see how well 5-ALA can find different cell populations within brain tumors - Identify the amount of 5-ALA that should be taken before surgery to make the tumors glow under ultraviolet light - Make sure the 5-ALA identifies tumor and not normal brain - Make sure 5-ALA does not cause any side effects
This phase II trial studies how well giving hypofractionated radiation therapy together with temozolomide and bevacizumab works in treating patients with high-grade glioblastoma multiforme or anaplastic glioma. Specialized radiation therapy, such as hypofractionated radiation therapy, that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving hypofractionated radiation therapy together with temozolomide and bevacizumab may kill more tumor cells.
This study is being done to determine if an investigational cancer treatment called vorinostat combined with fractionated stereotactic radiation therapy (FSRT) is effective in treating recurrent high grade gliomas. The main goal of this research study is to determine the highest dose of vorinostat that can be given to patients with recurrent tumors. The study will also determine the potential side effects and safety of these treatment combinations. Vorinostat is a small molecule inhibitor of histone deacetylase (HDAC). HDAC inhibitors help unravel the deoxyribonucleic acid (DNA) of the cancer cells and make them more susceptible to the treatment with radiation.
In this study subjects will be administered a single oral dose of Aminolevulinic Acid (ALA) prior to surgical resection of their brain tumor. The ALA ultimately causes brain tumor tissue to fluoresce or light up under ultraviolet light. During surgery an ultraviolet light in the microscope chain will be turned on. The tumor tissue will fluoresce bright pink allowing the surgeon to more easily differentiate tumor tissue from normal brain tissue. The aim of the study is to determine whether ALA and fluorescent visualization of tumor tissue improves the surgeon's ability to completely resect or remove the brain tumor.
Plerixafor in combination with bevacizumab is a drug combination that may stop cancer cells from growing abnormally. Bevacizumab, also known as Avastin, is FDA approved for use in patients with recurrent glioblastoma and has been studied extensively in other types of solid tumors. Plerixafor, also known as Mozobil, is FDA approved for use in patients with non-Hodgkin's lymphoma and multiple myeloma and has been used in treatment for other cancers. Information from experiments in laboratories suggests that the combination of plerixafor and bevacizumab may help prevent the growth of gliomas. Part 1: The investigators are looking for the highest dose of plerixafor that can be given safely with bevacizumab (with a 21 days on/7 days off regimen of plerixafor). The investigators will also do blood tests to find out how the body uses and breaks down the drug combination. Part 2: The investigators are looking to see if plerixafor can get past the blood-brain barrier and into brain tumors. The investigators will also do blood tests to find out how the body uses and breaks down the drug combination. Part 3: The investigators are looking for for more information re: safety and tolerability of plerixafor in combination with bevacizumab (with a 28 days on/0 days off regimen of plerixafor). The investigators will also do blood tests to find out how the body uses and breaks down the drug combination.
The purpose of this study is to determine if a drug called sorafenib can shrink LGA tumors (low-grade astrocytomas) in children and adults. Previous research has given us a better understanding of this type of tumor by studying the genetic "make-up" of LGAs. From this research, the investigators found that a drug called sorafenib may stop the growth of tumor cells by blocking some of the molecules needed for cell growth and by blocking blood flow to the tumor. This trial is studying how well sorafenib works in treating patients with LGAs, and how the effects relate to the specific genetic "make-up" of your particular tumor. This testing of your tumor's genetic make-up is optional and requires available tumor tissue for testing. In summary, the aims of this study are: To see if sorafenib can shrink LGAs; how well sorafenib is tolerated in patients with LGAs; and, how the effects of sorafenib relate to the genetic make-up of individual LGAs (Optional Study)
Background: - The blood-brain barrier helps to protect the central nervous system (brain and spinal cord) from harmful toxins, but also prevents potentially useful chemotherapy from reaching brain tumors. The barrier is formed by tight connections between blood vessel cells and molecules found on the surface of brain blood vessels such as Permeability-glycoprotein (Pgp). Pgp may influence whether patients with brain tumors known as gliomas respond to chemotherapy and what side effects they may experience. The compound (11C)N-desmethyl-loperamide ((11C)dLop) reacts to Pgp molecules, and therefore may be used with positron emission tomography (PET) imaging to study the blood brain barrier. Objectives: - To study the ability of PET imaging with (11C)dLop to evaluate the blood brain barrier in brain tumor patients. Eligibility: - Individuals at least 18 years of age who have a brain tumor with characteristics that may be imaged with techniques such as magnetic resonance imaging (MRI) andPET. Design: - Participants will be screened with a full physical examination and medical history, blood and urine tests, and tumor imaging studies (fluorodeoxyglucose PET and MRI scans with contrast agent). - The (11C)dLop scan will take 1 hour to perform. Participants will be asked to return for blood and urine tests approximately 24 hours after the PET scan. - Participants will have followup visits at least every 4 months by repeating a complete history and physical exam and brain MRI. Participants may have repeat scans with (11C)dLop at various points in the course of cancer treatment, but will not have these scans more than twice in a 12-month period. - Participants will be followed for as long as possible during treatment to see if imaging with (11C)dLop correlates with response to the treatments.
This clinical trial studies yoga therapy in treating patients with malignant brain tumors. Yoga therapy may improve the quality of life of patients with brain tumors
This study will determine the efficacy of the small molecule CDK4/6 inhibitor PD 0332991 (as measured by progression free survival at 6 months) in patients with recurrent glioblastoma multiforme or gliosarcoma who are Rb positive. A total of 30 patients will be treated; 15 will undergo a planned surgical resection and receive drug for 7 days prior to surgery, followed by drug after recovery from surgery, and the other 15 patients will receive drug without a planned surgical procedure.