Clinical Trials Logo

Astrocytoma clinical trials

View clinical trials related to Astrocytoma.

Filter by:

NCT ID: NCT02255461 Terminated - Clinical trials for Recurrent Childhood Medulloblastoma

Palbociclib Isethionate in Treating Younger Patients With Recurrent, Progressive, or Refractory Central Nervous System Tumors

Start date: December 8, 2014
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of palbociclib isethionate in treating younger patients with central nervous system tumors that have grown, come back, or not responded to treatment. Palbociclib isethionate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02175745 Terminated - Adult Glioblastoma Clinical Trials

18F FDOPA PET/CT or PET/MRI in Measuring Tumors in Patients With Newly Diagnosed or Recurrent Gliomas

Start date: December 2014
Phase: N/A
Study type: Interventional

This clinical trial compares fluorine F 18 fluorodopa (18F FDOPA) positron emission tomography (PET) with standard magnetic resonance imaging (MRI) in measuring tumors in patients with glioma that is newly diagnosed or recurrent (has returned). 18F FDOPA is a radioactive drug that binds to tumor cells and is captured in images by PET. Computed tomography (CT) and MRI are used with PET to describe information regarding the function, location, and size of the tumor. PET/CT or PET/MRI may be more accurate than standard MRI in helping doctors find and measure brain tumors.

NCT ID: NCT02168270 Terminated - Glioblastoma Clinical Trials

Temozolomide and Ascorbic Acid in Treating Patients With Recurrent High-Grade Glioma

Start date: June 16, 2014
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of ascorbic acid when given together with temozolomide in treating patients with high-grade glioma that has come back. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ascorbic acid contains ingredients that may prevent or slow the growth of high-grade gliomas. Giving temozolomide with ascorbic acid may kill more tumor cells.

NCT ID: NCT02039778 Terminated - Glioblastoma Clinical Trials

Stem Cell Radiotherapy and Temozolomide for Newly Diagnosed High-grade Glioma

STRONG
Start date: December 2013
Phase: Phase 1/Phase 2
Study type: Interventional

There are preliminary studies that suggest that radiation therapy to areas of the brain containing cancer stem cells (in addition to the area where the tumor was surgically treated) may help patients with high-grade brain tumors live longer. The purpose of this study is to determine whether the addition of stem-cell radiation therapy to the standard chemoradiation will further improve the outcome. The investigators will collect information about the patient's clinical status, disease control, neurocognitive effects, and quality of life during follow-up in our department. The purpose of the study is to improve the overall survival patients with newly diagnosed malignant brain tumors treated with stem cell radiation therapy and chemotherapy. The investigators will also measure how patients treated with this novel method of radiation therapy do over time in terms of disease control, potential neurocognitive side effects, overall function, and quality of life.

NCT ID: NCT02031965 Terminated - Clinical trials for Recurrent Childhood Glioblastoma

Oncolytic HSV-1716 in Treating Younger Patients With Refractory or Recurrent High Grade Glioma That Can Be Removed By Surgery

Start date: December 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and the safety of injecting HSV1716 (a new experimental therapy) into or near the tumor resection cavity. The injection will be done at the time of surgery. HSV1716 is a virus that has a gene which has been changed or removed (mutated) in such a way that lets the virus multiply in dividing cells of the tumor and kills the tumor cells.

NCT ID: NCT02023905 Terminated - Low Grade Glioma Clinical Trials

Everolimus With and Without Temozolomide in Adult Low Grade Glioma

Start date: March 19, 2014
Phase: Phase 2
Study type: Interventional

The purpose of this study is to find out what effects, good and/or bad, everolimus (RAD001, also known as Afinitor®) alone or with temozolomide has on the patient and the patient's low-grade glioma. Everolimus is being investigated as an anticancer agent based on its potential to prevent tumor cells from growing and multiplying. Specifically, there is a protein called mTOR that we think helps many tumors to grow, and everolimus blocks the effect of mTOR. Temozolomide is also an anticancer agent that prevents tumor cells from growing and multiplying.

NCT ID: NCT01996527 Terminated - Adult Glioblastoma Clinical Trials

3T MRI Biomarkers of Glioma Treatment Response

Start date: May 2012
Phase: Early Phase 1
Study type: Interventional

This pilot clinical trial studies advanced magnetic resonance imaging (MRI) techniques in measuring treatment response in patients with high-grade glioma. New diagnostic procedures, such as advanced MRI techniques at 3 Tesla, may be more effective than standard MRI in measuring treatment response in patients receiving treatment for high-grade gliomas.

NCT ID: NCT01884740 Terminated - Clinical trials for Glioblastoma Multiforme

Intraarterial Infusion Of Erbitux and Bevacizumab For Relapsed/Refractory Intracranial Glioma In Patients Under 22

Start date: June 2013
Phase: Phase 1/Phase 2
Study type: Interventional

Central nervous system (CNS) malignancies are the second most common malignancy and the most common solid tumor of childhood, including adolescence. Annually in the United States, approximately 2,200 children are diagnosed with CNS malignancy and rates appear to be increasing. CNS tumors are the leading cause of death from solid tumors in children. Survival duration after diagnosis in children is highly variable depending in part on age at diagnosis, location of tumor, and extent of resection; however, most children with high grade glioma die within 3 years of diagnosis. All patients with high grade glioma experience a recurrence after first-line therapy, so improvements in both first-line and salvage therapy are critical to enhancing quality-of-life and prolonging survival. It is unknown if currently used intravenous (IV) therapies even cross the blood brain barrier (BBB). We have shown in previous phase I trials that a single Superselective Intra-arterial Cerebral Infusion (SIACI) of Cetuximab and/or Bevacizumab is safe for the treatment of recurrent glioblastoma multiforme (GBM) in adults, and we are currently evaluating the efficacy of this treatment. Therefore, this phase I/II clinical research trial is an extension of that trial in that we seek to test the hypothesis that intra-arterial Cetuximab and Bevacizumab is safe and effective in the treatment of relapsed/refractory glioma in patients <22 years of age. We expect that this project will provide important information regarding the utility of SIACI Cetuximab and Bevacizumab therapy for malignant glioma in patients <22 years of age and may alter the way these drugs are delivered to our patients in the near future.

NCT ID: NCT01836549 Terminated - Glioblastoma Clinical Trials

Imetelstat Sodium in Treating Younger Patients With Recurrent or Refractory Brain Tumors

Start date: March 2013
Phase: Phase 2
Study type: Interventional

This molecular biology and phase II trial studies how well imetelstat sodium works in treating younger patients with recurrent or refractory brain tumors. Imetelstat sodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01721577 Terminated - Glioblastoma Clinical Trials

Phase I/II Trial of AXL1717 in the Treatment of Recurrent Malignant Astrocytomas

AXL1717
Start date: December 2012
Phase: Phase 1/Phase 2
Study type: Interventional

This is a single-center, open-label, non-randomized, Phase I/IIa study to investigate the safety, tolerability, and antitumor efficacy of AXL1717 (picropodophyllin as active agent formulated in an oral suspension; PPP) in patients with recurrent malignant astrocytomas (glioblastoma, gliosarcoma, anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic oligoastrocytoma, and anaplastic ependymoma). Patients will be treated for up to 5 cycles. A treatment cycle is defined as 28 days+7 days rest (28+7 days during cycle 1 to 4, and 28 days during cycle 5). The following cycle will not be started until the treatment continuation criteria are fulfilled. Concomitant supportive therapies will be allowed.