Clinical Trials Logo

Clinical Trial Summary

To investigate the effect of reducing the level of allergens and pollutants in the bedroom and living room by placing a "Dyson air purifier", on poorly controlled asthmatic subjects.


Clinical Trial Description

Asthma is one of the most common chronic diseases. Little change in morbidity and mortality has occurred despite improvements in pharmacotherapy. In the last few decades, there has been an increase in the prevalence of asthma and other allergic diseases. The precise cause for this increase in disease prevalence is not known but it has coincided with changes to the quality of indoor air with increases in the levels of allergens and pollutants. Bedroom exposure to dust-mite allergens has been linked to worsening asthma symptoms and increase in bronchial responsiveness. In places where dust mites cannot thrive, allergens from cat, cockroach and Alternaria assume importance. High indoor temperatures and humidity may, by a number of mechanisms, increase the allergenic burden, particularly the proliferation of house-dust mites and moulds. Therefore, modern living conditions are associated with a higher risk of allergen exposure causing increase in sensitisation and symptoms of asthma. In addition to allergens, the indoor environment contains other biological materials (such as microbiome and endotoxin), and pollutants (gases and particulate matter) which can adversely affect asthma development and morbidity. Indoor pollutants include smoke from cigarettes and wood, coal or gas fires, particulate materials associated with bio-fuel combustion, chemical vapours and gases including nitrogen dioxide (NO2), formaldehyde and volatile organic compounds (VOCs). The latter may come from sources including building products, cleaning agents, and paints. One such VOC is formaldehyde, which can be irritant to both upper and lower respiratory tract. Small particulate matter (PM2.5) is particularly damaging as it gets to the small airways of the lung. Major indoor sources of NO2 and particulate matter include gas stoves and cigarette smoke but outdoor sources such as traffic and industrial pollution can also contaminate indoor environment. It has also been suggested that exposure to pollutants can potentiate the effects of allergen. Indeed, a combination of high levels of indoor pollution and allergens is causally related to the development and severity of asthma. Allergens, microbiome and pollutants can interact with each other to augment the immune response leading to harmful effects on the airways. Thus, indoor air pollution is a significant environmental trigger for acute exacerbation of asthma (and other respiratory conditions such as COPD), leading to increasing symptoms, emergency department visits, hospital admissions and even mortality. An estimated 75% of hospital admissions for asthma are avoidable. Maintaining high air quality with lower levels of allergens and pollutants is therefore important in improving the health of individuals with asthma and other respiratory diseases. Therefore, a feasible and practical intervention that can reduce allergen and pollutant levels in the indoor air should reduce morbidity and improve asthma control. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04729530
Study type Interventional
Source The David Hide Asthma & Allergy Research Centre
Contact
Status Completed
Phase N/A
Start date September 3, 2019
Completion date July 21, 2021

See also
  Status Clinical Trial Phase
Terminated NCT04410523 - Study of Efficacy and Safety of CSJ117 in Patients With Severe Uncontrolled Asthma Phase 2
Completed NCT04624425 - Additional Effects of Segmental Breathing In Asthma N/A
Active, not recruiting NCT03927820 - A Pharmacist-Led Intervention to Increase Inhaler Access and Reduce Hospital Readmissions (PILLAR)
Completed NCT04617015 - Defining and Treating Depression-related Asthma Early Phase 1
Recruiting NCT03694158 - Investigating Dupilumab's Effect in Asthma by Genotype Phase 4
Terminated NCT04946318 - Study of Safety of CSJ117 in Participants With Moderate to Severe Uncontrolled Asthma Phase 2
Completed NCT04450108 - Vivatmo Pro™ for Fractional Exhaled Nitric Oxide (FeNO) Monitoring in U.S. Asthmatic Patients N/A
Completed NCT03086460 - A Dose Ranging Study With CHF 1531 in Subjects With Asthma (FLASH) Phase 2
Completed NCT01160224 - Oral GW766944 (Oral CCR3 Antagonist) Phase 2
Completed NCT03186209 - Efficacy and Safety Study of Benralizumab in Patients With Uncontrolled Asthma on Medium to High Dose Inhaled Corticosteroid Plus LABA (MIRACLE) Phase 3
Completed NCT02502734 - Effect of Inhaled Fluticasone Furoate on Short-term Growth in Paediatric Subjects With Asthma Phase 3
Completed NCT01715844 - L-Citrulline Supplementation Pilot Study for Overweight Late Onset Asthmatics Phase 1
Terminated NCT04993443 - First-In-Human Study to Evaluate the Safety, Tolerability, Immunogenicity, and Pharmacokinetics of LQ036 Phase 1
Completed NCT02787863 - Clinical and Immunological Efficiency of Bacterial Vaccines at Adult Patients With Bronchopulmonary Pathology Phase 4
Recruiting NCT06033833 - Long-term Safety and Efficacy Evaluation of Subcutaneous Amlitelimab in Adult Participants With Moderate-to-severe Asthma Who Completed Treatment Period of Previous Amlitelimab Asthma Clinical Study Phase 2
Completed NCT03257995 - Pharmacodynamics, Safety, Tolerability, and Pharmacokinetics of Two Orally Inhaled Indacaterol Salts in Adult Subjects With Asthma. Phase 2
Completed NCT02212483 - Clinical Effectiveness and Economical Impact of Medical Indoor Environment Counselors Visiting Homes of Asthma Patients N/A
Recruiting NCT04872309 - MUlti-nuclear MR Imaging Investigation of Respiratory Disease-associated CHanges in Lung Physiology
Withdrawn NCT01468805 - Childhood Asthma Reduction Study N/A
Recruiting NCT05145894 - Differentiation of Asthma/COPD Exacerbation and Stable State Using Automated Lung Sound Analysis With LungPass Device