Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT04337229
Other study ID # DYIGIT
Secondary ID Ayfer ACIKGOZ
Status Not yet recruiting
Phase N/A
First received
Last updated
Start date September 2020
Est. completion date September 2021

Study information

Verified date April 2020
Source Eskisehir Osmangazi University
Contact DENIZ YIGIT, Res.Asst.
Phone 05428092848
Email deniz.yigit@dpu.edu.tr
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

This study; It will be carried out with the aim of developing the artificial intelligence method, which allows automatic determination of comfort levels of newborns.


Description:

This study; It will be carried out with the aim of developing the artificial intelligence method, which allows automatic determination of comfort levels of newborns. Facial and body movements of newborns will be recorded by camera, and images will be processed in computer environment by using artificial intelligence techniques. As a result, it is planned to create a technology that determines the comfort level of the newborn quickly and simply and can be used by the mobile device.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 1000
Est. completion date September 2021
Est. primary completion date December 2020
Accepts healthy volunteers No
Gender All
Age group N/A to 28 Days
Eligibility Inclusion Criteria:

- Parents' acceptance of their baby's participation in the study

- Having a baby born at 24-42 weeks

Exclusion Criteria:

- Having a baby born before 24 weeks of gestation or after 42 weeks of gestation.

- Has received analgesic, muscle relaxant or sedative drug treatment that may affect comfort and behavior (last 24 hours)

- Newborn has serious neurological damage

Study Design


Related Conditions & MeSH terms


Intervention

Other:
Artifical intelligent
it is planned to create a technology that determines the comfort level of the newborn quickly and simply, easy to use, time-saving and can be used by the mobile device.

Locations

Country Name City State
n/a

Sponsors (1)

Lead Sponsor Collaborator
Eskisehir Osmangazi University

References & Publications (29)

Ambuel B, Hamlett KW, Marx CM, Blumer JL. Assessing distress in pediatric intensive care environments: the COMFORT scale. J Pediatr Psychol. 1992 Feb;17(1):95-109. — View Citation

Arroyo-Novoa CM, Figueroa-Ramos MI, Puntillo KA, Stanik-Hutt J, Thompson CL, White C, Wild LR. Pain related to tracheal suctioning in awake acutely and critically ill adults: a descriptive study. Intensive Crit Care Nurs. 2008 Feb;24(1):20-7. Epub 2007 Au — View Citation

Arslan, H., & Konuk Sener, D. (2009). Stigma, spiritüalite ve konfor kavramlarinin Meleis' in kavram gelistirme sürecine göre irdelenmesi. Maltepe Üniversitesi Hemsirelik Bilim ve Sanati Dergisi, 2(1): 51-58.

Atalay, M., & Çelik, E. (2017). Büyük veri analizinde yapay zekâ ve makine ögrenmesi uygulamalari. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(22): 155-172.

Aydin, S.E. (2017). Yapay zeka teknolojisi (yapay zekalarin dünü bugünü yarini), Yüksek lisans tezi, Çukurova Üniversitesi, Adana.

Bodur, G., & Kaya, H. (2017). Hemsirelerin gözüyle gelecek: 2050'li yillar. Ege Üniversitesi Hemsirelik Fakültesi Dergisi, 33 (1): 27-38.

Çimen, Ü. (2016). Solunum seslerinin yapay zekâ ortaminda siniflandirilmasi, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü, Afyonkarahisar.

Çinar Yücel S. (2011). Kolcaba'nin konfor kurami. Ege Üniversitesi Hemsirelik Yüksek Okulu Dergisi, 27: 79-88.

Coughlin M, Gibbins S, Hoath S. Core measures for developmentally supportive care in neonatal intensive care units: theory, precedence and practice. J Adv Nurs. 2009 Oct;65(10):2239-48. doi: 10.1111/j.1365-2648.2009.05052.x. — View Citation

Freire NB, Garcia JB, Lamy ZC. Evaluation of analgesic effect of skin-to-skin contact compared to oral glucose in preterm neonates. Pain. 2008 Sep 30;139(1):28-33. doi: 10.1016/j.pain.2008.02.031. Epub 2008 Apr 22. — View Citation

Hunter, J. (2010). Therapeutic positioning: neuromotor, physiologic, and sleep implications. Developmental care of newborns and infants. A guide for health professionals. 2nd edn. Glenview, IL: NANN: 283-312.

Ista E, van Dijk M, Tibboel D, de Hoog M. Assessment of sedation levels in pediatric intensive care patients can be improved by using the COMFORT "behavior" scale. Pediatr Crit Care Med. 2005 Jan;6(1):58-63. — View Citation

Kahraman, A., Basbakkal, Z., & Yalaz, M. (2014). Yenidogan konfor davranis ölçegi'nin Türkçe geçerlik ve güvenirligi. Uluslararasi Hakemli Hemsirelik Arastirmalari Dergisi, 1(2).

Karabacak, Ü., & Acaroglu, R. (2011). Konfor kurami. Maltepe Üniversitesi Bilim ve Sanat Dergisi, 4(1): 197-202.

Karakaplan, S., & Yildiz, H. (2010). Dogum sonu konfor ölçegi gelistirme çalismasi. Maltepe Üniversitesi Hemsirelik Bilim ve Sanati Dergisi, 3(1): 55-65.

Kaya, U., Yilmaz, A., & Dikmen, Y. (2019). Saglik alaninda kullanilan derin ögrenme yöntemleri. Avrupa Bilim ve Teknoloji Dergisi, (16): 792-808.

Kolcaba K, DiMarco MA. Comfort Theory and its application to pediatric nursing. Pediatr Nurs. 2005 May-Jun;31(3):187-94. Review. — View Citation

Kolcaba K, Tilton C, Drouin C. Comfort Theory: a unifying framework to enhance the practice environment. J Nurs Adm. 2006 Nov;36(11):538-44. — View Citation

Küçük Alemdar, D., & Güdücü Tüfekçi, F. (2015). Prematüre bebek konfor ölçegi'nin Türkçe geçerlilik ve güvenilirligi. Hemsirelikte Egitim ve Arastirma Dergisi, 12 (2): 142-148.

Kuguoglu, S., & Karabacak, Ü. (2008). Genel konfor ölçeginin Türkçe'ye uyarlanmasi. I.Ü.F.N. Hemsirelik Dergisi, 16 (61): 16-23.

Losacco V, Cuttini M, Greisen G, Haumont D, Pallás-Alonso CR, Pierrat V, Warren I, Smit BJ, Westrup B, Sizun J; ESF Network. Heel blood sampling in European neonatal intensive care units: compliance with pain management guidelines. Arch Dis Child Fetal Ne — View Citation

Mathai S, Natrajan N, Rajalakshmi NR. A comparative study of nonpharmacological methods to reduce pain in neonates. Indian Pediatr. 2006 Dec;43(12):1070-5. — View Citation

Mijwel, M. M. (2015). History of artificial intelligence. Computer science, college of science, 1-6.

Sönmez, D. (2009). Pediatrik yogun bakim ünitesinde endotrakeal aspirasyon agrisinin degerlendirilmes, Yüksek lisans tezi, Marmara Üniversitesi Saglik Bilimleri Enstitüsü, Istanbul.

Terzi, B., Kaya, N. (2017). Konfor kurami ve analizi. Anadolu Hemsirelik ve Saglik Bilimleri Dergisi, 20: 1.

Tutar Güven, S., & Isler Dalgiç, A. (2017). Prematüre yenidoganlar için gelistirilmis bireysellestirilmis destekleyici gelisimsel bakim programi. Uluslararasi Hakemli Kadin Hastaliklari ve Anne Çocuk Sagligi Dergisi, 9.

Uga E, Candriella M, Perino A, Alloni V, Angilella G, Trada M, Ziliotto AM, Rossi MB, Tozzini D, Tripaldi C, Vaglio M, Grossi L, Allen M, Provera S. Heel lance in newborn during breastfeeding: an evaluation of analgesic effect of this procedure. Ital J Pe — View Citation

van Dijk M, Roofthooft DW, Anand KJ, Guldemond F, de Graaf J, Simons S, de Jager Y, van Goudoever JB, Tibboel D. Taking up the challenge of measuring prolonged pain in (premature) neonates: the COMFORTneo scale seems promising. Clin J Pain. 2009 Sep;25(7) — View Citation

Yildirim, T. (2019). Saglikta dönüsüm ve yapay zekânin pediatriye yansimalari. Karadeniz Pediatri Günleri Kongre Özet Kitabi, 2 (1): 1-97.

* Note: There are 29 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Images of the newborn Images will be taken to transfer behaviors of newborns to the computer. Attention will be paid to making face and body movements visible while taking the image.The camera will take 12 hours of view of each newborn.However, this period can be shortened as a result of preliminary work. 12 hours for each newborn
Secondary Artificial intelligence techniques The images of the newborn will be transferred to the computer. The images will be processed by a specialist on computer using artificial intelligence techniques. Approximately 1 week for each newborn
See also
  Status Clinical Trial Phase
Completed NCT04589078 - Polyp REcognition Assisted by a Device Interactive Characterization Tool - The PREDICT Study
Completed NCT03857438 - Correlation of Audiovisual Features With Clinical Variables and Neurocognitive Functions in Bipolar Disorder, Mania
Completed NCT04735055 - Artificial Intelligence Prediction for the Severity of Acute Pancreatitis
Not yet recruiting NCT05452993 - Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography N/A
Completed NCT05687318 - A Clinical Trial of the Effectiveness and Safety of Software Assisting Diagnose the Intestinal Polyp Digestive Endoscopy by Analysis of Colonoscopy Medical Images From Electronic Digestive Endoscopy Equipment N/A
Recruiting NCT06051682 - Optimization of the Diagnosis of Bone Fractures in Patients Treated in the Emergency Department by Using Artificial Intelligence for Reading Radiological Images in Comparison With Traditional Reading by the Emergency Doctor. N/A
Not yet recruiting NCT06039917 - Effect of the Automatic Surveillance System on Surveillance Rate of Patients With Gastric Premalignant Lesions N/A
Not yet recruiting NCT06362629 - AI App for Management of Atopic Dermatitis N/A
Recruiting NCT06164002 - A I in the Prediction of Clinical Performance, Marginal Fit and Fracture Resistance of Vertical Versus Horizontal Margin Designs Fabricated With 2 Ceramic Materials N/A
Recruiting NCT06059378 - Real-life Implementation of an AI-based Optical Diagnosis N/A
Completed NCT05517889 - Repeatability and Stability of Healthy Skin Features on OCT
Completed NCT05006092 - Surveillance Modified by Artificial Intelligence in Endoscopy (SMARTIE) N/A
Completed NCT04816981 - AI-EBUS-Elastography for LN Staging N/A
Recruiting NCT04535466 - Diagnosis Predictive Modle for Dense Density Breast Tissue Based on Radiomics
Enrolling by invitation NCT04719117 - Retrograde Cholangiopancreatography AI Assisted System Validation on Effectiveness and Safety
Completed NCT04399590 - Comparing the Number of False Activations Between Two Artificial Intelligence CADe Systems: the NOISE Study
Recruiting NCT04126265 - Artificial Intelligence-assisted Colonoscopy for Detection of Colon Polyps N/A
Recruiting NCT06255808 - Development of Assist Tool for Breast Examination Using the Principle of Ultrasonic Sensor
Recruiting NCT04131530 - Automatic Evaluation of Inflammation Activity in Ulcerative Colitis Using pCLE With Artificial Intelligence
Recruiting NCT04598997 - Artificial Intelligence With DEep Learning on COROnary Microvascular Disease