Clinical Trials Logo

Clinical Trial Summary

The objective of this study is to determine whether acetaminophen (APAP), N-acetylcysteine (NAC), and APAP in combination with NAC will inhibit lipid peroxidation in aneurysmal subarachnoid hemorrhage (aSAH), utilizing F2-IsoPs as biomarkers for lipid peroxidation.


Clinical Trial Description

Aneurysmal subarachnoid hemorrhage (aSAH) is an often devastating form of stroke with high morbidity and mortality despite advances in surgical management. Approximately 30,000 patients annually suffer aSAH in the U.S. For patients who survive the initial subarachnoid hemorrhage, delayed cerebral vasospasm occurring from days 4-14 is the greatest cause of neurological disability and death. A growing body of evidence incriminates hemoprotein-catalyzed lipid peroxidation as the mediator of the vasospasm. Hemoglobin released from lysed red cells in the subarachnoid space becomes oxidized, in which state it acts as a pseudoperoxidase and generates the protein radicals that induce lipid peroxidation. F2-isoprostanes formed by this lipid peroxidation are highly potent constrictors of cerebral arterioles. We have demonstrated a more than 5 fold mean increase in F2-isoprostanes in the cerebrospinal fluid of patients with aSAH; this increase is maximal at the time of delayed vasospasm, and the level of increase is a function of the severity of the aSAH. We hypothesize that such vasoconstrictors are major contributors to the vasospasm produced by the hemoproteins, hemoglobin and myoglobin, in diseases in which they are released from their cellular confines. We have discovered that acetaminophen (APAP) is a potent inhibitor of hemoprotein-catalyzed lipid peroxidation with an IC50 for hemoglobin of 15 uM, which is in the range of plasma levels resulting from therapeutic doses of the drug in humans. Acetaminophen acts by reducing the ferryl-oxo radical form of the heme, and thereby prevents formation of the hemoprotein radical that initiates lipid peroxidation. To assess proof of concept in vivo, we determined the effect of acetaminophen in a rat model of rhabdomyolysis in which renal failure results from intense vasospasm. Acetaminophen blocked lipid peroxidation in this model, and prevented the renal failure with a dose that produced plasma levels in the therapeutic range for humans. We also have demonstrated that N-acetylcysteine (NAC) will inhibit hemoprotein-catalyzed lipid peroxidation. Moreover, NAC administration increases the levels of glutathione in vivo, and glutathione is a co-substrate for the glutathione peroxidases that can reduce the levels of peroxides in the environment of the aSAH . This is important as acetaminophen is most potent in inhibiting hemoprotein-catalyzed lipid peroxidation when peroxide concentrations are low. This concerted evidence is the basis for a hypothesis that NAC will augment the efficacy of acetaminophen as an inhibitor of hemoprotein-catalyzed lipid peroxidation in aSAH. These finding provide the rationale for a pilot study seeking proof of the concept that acetaminophen-based regimens can inhibit lipid peroxidation in patients with subarachnoid hemorrhage. Lipid peroxidation will be determined by analysis of F2-isoprostanes in cerebrospinal fluid. If such inhibition is seen, that then would provide a basis for a larger multi-center investigation to assess the effect on clinical endpoints. This pilot study will determine whether APAP, NAC, and APAP in combination with NAC will inhibit lipid peroxidation in aneurysmal subarachnoid hemorrhage. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT00585559
Study type Interventional
Source Vanderbilt University Medical Center
Contact
Status Terminated
Phase Phase 3
Start date April 2007
Completion date October 26, 2023

See also
  Status Clinical Trial Phase
Completed NCT03209830 - Pharmaceutical Treatment of Fatigue After Aneurysmal Subarachnoid Hemorrhage Phase 2
Completed NCT05131295 - Dapsone Use in Patients With Aneurysmal Subarachnoid Hemorrhage. Phase 3
Recruiting NCT04583163 - Variability in Transcranial Doppler Technique in Neuro-Critical Care Patients
Not yet recruiting NCT03271697 - Astragalus Membranaceus on Aneurysmal Subarachnoid Hemorrhage Phase 2/Phase 3
Not yet recruiting NCT05483751 - Micro- and Macrovascular Parameters in Delayed Cerebral Ischemia
Recruiting NCT01098890 - Intraventricular Tissue Plasminogen Activator (tPA) in the Management of Aneurysmal Subarachnoid Hemorrhage Phase 2
Completed NCT00692744 - Quality of Life in Elderly After Aneurysmal Subarachnoid Hemorrhage (SAH) N/A
Recruiting NCT05738083 - Machine Learning-based Prediction of Complications, Disability, and Death in Patients With aSAH
Completed NCT03754335 - SubArachnoid Hemorrhage HEadache Treated by Lumbar Puncture N/A
Completed NCT06076590 - Impact of Multiple Electrolytes Injection Ⅱ and Saline on Hyperchloremia in Patients With Aneurysmal Subarachnoid Hemorrhage:a Pilot Study Phase 4
Recruiting NCT04148105 - Cilostazol and Nimodipine Combined Therapy After Aneurysmal Subarachnoid Hemorrhage (aSAH) Phase 4
Recruiting NCT04548401 - Effect of Antiplatelet Therapy on Cognition After Aneurysmal Subarachnoid Hemorrhage
Recruiting NCT02129413 - Safety Study of Carotid Body Neurostimulation to Treat Cerebral Vasospasm N/A
Terminated NCT00487461 - Use of Simvastatin for the Prevention of Vasospasm in Aneurysmal Subarachnoid Hemorrhage N/A
Recruiting NCT05974111 - COAgulation Disorders in Ischaemic and Haemorrhagic Stroke
Not yet recruiting NCT06288659 - aSAH Treatment Based on Intraventricular ICP Monitoring: A Prospective, Multicenter, Randomized and Controlled Trial N/A
Recruiting NCT03706768 - Degradation of the Glycocalyx in Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage N/A
Recruiting NCT06284642 - Early Lumbar Drainage Combined With Intrathecal Urokinase Injection for Treatment of Severe Aneurysmal SAH (LD-ITUK) Phase 4
Recruiting NCT01773200 - Prognostic Value of Circulating Endothelial Progenitor Cells in Aneurysmal Subarachnoid Hemorrhage N/A
Completed NCT02026596 - SpareBrain - Mechanisms and Prevention of Secondary Brain Injury in Subarachnoid Haemorrhage N/A