Anesthesia Clinical Trial
Official title:
Cerebral Hemodynamic and Metabolic Responses to Anesthesia and Vasopressors in Adult Surgery: A 2x2 Factorial Design Randomized Controlled Trial With Light-based Neuromonitoring (CHEM-FACT Study)
The brain is a highly active organ that requires a large blood flow to function properly. Normally, blood flow is tightly linked to the brain's energy demands. However, during surgery, anesthesia can affect this relationship in different ways. Some types of anesthesia can decrease blood flow to the brain, while others can increase it. Anesthesiologists need to be careful to maintain adequate blood flow to the brain during surgery, especially when blood pressure drops. Drugs may be used to increase blood pressure, but some of these drugs can also affect blood flow to the brain. It is still unclear how to best maintain blood flow to the brain during surgery and how different types of anesthesia and drugs affect this process. The study aims to assess the clinical utility of a new technique that uses light-based neuromonitoring to measure changes in cerebral blood flow and metabolism. The investigators will recruit 80 adult patients undergoing surgery under general anesthesia and randomize them into one of four groups to evaluate the effects of different anesthetic agents and vasopressors on brain hemodynamics and metabolism. The study will include patients over 18 years of age with no history of neurological conditions, substance abuse, or contraindications to cerebral oximetry devices or specific anesthetic agents. The patients will receive standard anesthesia care and be monitored with our light-based neuromonitoring system. This study aims to demonstrate the device's ability to detect changes in cerebral hemodynamic parameters related to anesthesia induction and systemic hypotension. This study will also evaluate the effects of anesthetic maintenance agents and vasopressors on cerebral hemodynamics and neurovascular coupling.
Status | Recruiting |
Enrollment | 80 |
Est. completion date | December 31, 2025 |
Est. primary completion date | December 31, 2025 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 19 Years and older |
Eligibility | Inclusion Criteria: 1. Adult patients over the age of 18 years old. 2. ASA I-IV 3. Undergoing surgery under general anesthesia at London Health Sciences Centre or St. Joseph's Healthcare that is scheduled to last longer than 1 hour. Exclusion Criteria: 1. Had any neurological conditions such as history of stroke, TIA, neurodegenerative disease, or carotid stenosis 2. Had a history of substance abuse such as heavy cannabis users 3. Have a contraindication of applying the cerebral oximetry device (e.g., skin lesions in the forehead) 4. Have contraindications to receive specific anesthetic agents or vasopressors such as malignant hyperthermia or an allergy. 5. Unable to communicate with the research staff |
Country | Name | City | State |
---|---|---|---|
Canada | London Health Sciences Centre | London | Ontario |
Lead Sponsor | Collaborator |
---|---|
Jason Chui |
Canada,
Abdalmalak A, Milej D, Diop M, Shokouhi M, Naci L, Owen AM, St Lawrence K. Can time-resolved NIRS provide the sensitivity to detect brain activity during motor imagery consistently? Biomed Opt Express. 2017 Mar 13;8(4):2162-2172. doi: 10.1364/BOE.8.002162. eCollection 2017 Apr 1. — View Citation
Durduran T, Yodh AG. Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement. Neuroimage. 2014 Jan 15;85 Pt 1(0 1):51-63. doi: 10.1016/j.neuroimage.2013.06.017. Epub 2013 Jun 14. — View Citation
Jonsson M, Lindstrom D, Wanhainen A, Djavani Gidlund K, Gillgren P. Near Infrared Spectroscopy as a Predictor for Shunt Requirement During Carotid Endarterectomy. Eur J Vasc Endovasc Surg. 2017 Jun;53(6):783-791. doi: 10.1016/j.ejvs.2017.02.033. Epub 2017 Apr 19. — View Citation
Kaya K, Zavriyev AI, Orihuela-Espina F, Simon MV, LaMuraglia GM, Pierce ET, Franceschini MA, Sunwoo J. Intraoperative Cerebral Hemodynamic Monitoring during Carotid Endarterectomy via Diffuse Correlation Spectroscopy and Near-Infrared Spectroscopy. Brain Sci. 2022 Aug 2;12(8):1025. doi: 10.3390/brainsci12081025. — View Citation
Khan JM, McInnis CL, Ross-White A, Day AG, Norman PA, Boyd JG. Overview and Diagnostic Accuracy of Near Infrared Spectroscopy in Carotid Endarterectomy: A Systematic Review and Meta-analysis. Eur J Vasc Endovasc Surg. 2021 Nov;62(5):695-704. doi: 10.1016/j.ejvs.2021.08.022. Epub 2021 Oct 6. — View Citation
Khozhenko A, Lamperti M, Terracina S, Bilotta F. Can Cerebral Near-infrared Spectroscopy Predict Cerebral Ischemic Events in Neurosurgical Patients? A Narrative Review of the Literature. J Neurosurg Anesthesiol. 2019 Oct;31(4):378-384. doi: 10.1097/ANA.0000000000000522. — View Citation
Milej D, He L, Abdalmalak A, Baker WB, Anazodo UC, Diop M, Dolui S, Kavuri VC, Pavlosky W, Wang L, Balu R, Detre JA, Amendolia O, Quattrone F, Kofke WA, Yodh AG, St Lawrence K. Quantification of cerebral blood flow in adults by contrast-enhanced near-infrared spectroscopy: Validation against MRI. J Cereb Blood Flow Metab. 2020 Aug;40(8):1672-1684. doi: 10.1177/0271678X19872564. Epub 2019 Sep 9. — View Citation
Milej D, Shahid M, Abdalmalak A, Rajaram A, Diop M, St Lawrence K. Characterizing dynamic cerebral vascular reactivity using a hybrid system combining time-resolved near-infrared and diffuse correlation spectroscopy. Biomed Opt Express. 2020 Jul 23;11(8):4571-4585. doi: 10.1364/BOE.392113. eCollection 2020 Aug 1. — View Citation
Murkin JM. Cerebral oximetry: monitoring the brain as the index organ. Anesthesiology. 2011 Jan;114(1):12-3. doi: 10.1097/ALN.0b013e3181fef5d2. No abstract available. — View Citation
Rajaram A, Milej D, Suwalski M, Kebaya L, Kewin M, Yip L, de Ribaupierre S, Han V, Diop M, Bhattacharya S, St Lawrence K. Assessing cerebral blood flow, oxygenation and cytochrome c oxidase stability in preterm infants during the first 3 days after birth. Sci Rep. 2022 Jan 7;12(1):181. doi: 10.1038/s41598-021-03830-7. — View Citation
Rajaram A, Milej D, Suwalski M, Yip LCM, Guo LR, Chu MWA, Chui J, Diop M, Murkin JM, St Lawrence K. Optical monitoring of cerebral perfusion and metabolism in adults during cardiac surgery with cardiopulmonary bypass. Biomed Opt Express. 2020 Sep 29;11(10):5967-5981. doi: 10.1364/BOE.404101. eCollection 2020 Oct 1. — View Citation
Selb J, Boas DA, Chan ST, Evans KC, Buckley EM, Carp SA. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia. Neurophotonics. 2014 Jul;1(1):015005. doi: 10.1117/1.NPh.1.1.015005. — View Citation
Verdecchia K, Diop M, Lee A, Morrison LB, Lee TY, St Lawrence K. Assessment of a multi-layered diffuse correlation spectroscopy method for monitoring cerebral blood flow in adults. Biomed Opt Express. 2016 Aug 24;7(9):3659-3674. doi: 10.1364/BOE.7.003659. eCollection 2016 Sep 1. — View Citation
* Note: There are 13 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Effects of anesthetic maintenance agents and vasopressors on cerebral hemodynamics and metabolism. | Differences in CMRO2 during surgery between sevoflurane and propofol groups will be analyzed by repeated measures ANOVA. Next, differences in CMRO2 during surgery between the phenylephrine and ephedrine groups will be compared by repeated measures ANOVA. To explore any interaction, we will examine whether the effect of one independent variable depends on the level of the other independent variable by conducting a two-way ANOVA. A two-way ANOVA will allow us to examine the main effects of each independent variable and the interaction effect. The interaction effect can be examined by looking at the F-value and p-value associated with the interaction term in the ANOVA output. If the p-value is significant (i.e., less than the alpha level), then there is evidence of an interaction effect. | Duration of surgery | |
Secondary | Effects of anesthetic maintenance agents and vasopressors on cerebral hemodynamics and metabolism during induction | The times corresponding to the anesthesia induction with propofol will be marked. Short periods (60 s before and 300 s after propofol injection) are selected to measure CBF and CMRO2 changes. The onset of anesthesia will be confirmed with BIS/PSI monitor. To test the hypotheses, one-way repeated measures ANOVA will be used to compare the differences between before and after anesthesia induction. The time sequence of cerebral hemodynamics and metabolism in relation to the changes of systemic blood pressure will be plotted out. In addition, multiple regression analysis will be used to investigate the relationship between patient characteristics (baseline arterial blood pressure, medical comorbidities) and the magnitude of CBF and CMRO2 reductions during anesthesia induction. | Anesthesia induction |
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT04279054 -
Decreased Neuraxial Morphine After Cesarean Delivery
|
Early Phase 1 | |
Active, not recruiting |
NCT04580030 -
Tricuapid Annular Plane Sistolic Excursion Before General Anesthesia Can Predict Hypotension After Induction
|
||
Completed |
NCT03640442 -
Modified Ramped Position for Intubation of Obese Females.
|
N/A | |
Recruiting |
NCT04099693 -
A Prospective Randomized Study of General Anesthesia Versus Anesthetist Administered Sedation for ERCP
|
||
Terminated |
NCT02481999 -
Pre- and Postoperative EEG-Monitoring for Children Aged From 0,5 to 8 Years
|
||
Completed |
NCT04235894 -
An Observer Rating Scale of Facial Expression Can Predict Dreaming in Propofol Anesthesia
|
||
Recruiting |
NCT05525104 -
The Effect of DSA on Recovery of Anaesthesia in Children (Het Effect Van DSA op Het Herstel na Anesthesie Bij Kinderen).
|
N/A | |
Recruiting |
NCT05024084 -
Desflurane and Sevoflurane Minimal Flow Anesthesia on Recovery and Anesthetic Depth
|
Phase 4 | |
Completed |
NCT04204785 -
Noise in the OR at Induction: Patient and Anesthesiologists Perceptions
|
N/A | |
Completed |
NCT03277872 -
NoL, HR and MABP Responses to Tracheal Intubation Performed With MAC Blade Versus Glidescope
|
N/A | |
Terminated |
NCT03940651 -
Cardiac and Renal Biomarkers in Arthroplasty Surgery
|
Phase 4 | |
Terminated |
NCT02529696 -
Measuring Sedation in the Intensive Care Unit Using Wireless Accelerometers
|
||
Completed |
NCT05346588 -
THRIVE Feasibility Trial
|
Phase 3 | |
Terminated |
NCT03704285 -
Development of pk/pd Model of Propofol in Patients With Severe Burns
|
||
Recruiting |
NCT05259787 -
EP Intravenous Anesthesia in Hysteroscopy
|
Phase 4 | |
Completed |
NCT02894996 -
Does the Response to a Mini-fluid Challenge of 3ml/kg in 2 Minutes Predict Fluid Responsiveness for Pediatric Patient?
|
N/A | |
Completed |
NCT05386082 -
Anesthesia Core Quality Metrics Consensus Delphi Study
|
||
Terminated |
NCT03567928 -
Laryngeal Mask in Upper Gastrointestinal Procedures
|
N/A | |
Recruiting |
NCT06074471 -
Motor Sparing Supraclavicular Block
|
N/A | |
Completed |
NCT04163848 -
CARbon Impact of aNesthesic Gas
|