View clinical trials related to Anaplastic Oligodendroglioma.
Filter by:This is a phase I study to evaluate the safety and tolerability of Sorafenib in combination with Temodar and radiation therapy in patients with newly diagnosed high grade glioma (glioblastoma, gliosarcoma, anaplastic astrocytoma and anaplastic oligodendroglioma or oligoastrocytoma). The mechanism of action of sorafenib, an oral multikinase inhibitor, makes it an interesting drug to investigate in the treatment of patients with high grade glioma as this agent has anti-angiogenic activity and inhibits other pathways such as Ras, Platelet-derived growth factor (PDGF) and fms-like tyrosine kinase receptor-3 (Flt-3), which are potential targets against gliomas.
The primary objective of this study is to determine the maximum tolerated dose (MTD) and dose limiting toxicity (DLT) of dasatinib when combined with protracted, daily temozolomide (TMZ). Secondary objectives are: To further evaluate the safety and tolerability of dasatinib plus protracted, daily TMZ; 2. To evaluate the pharmacokinetics of dasatinib when administered with protracted, daily TMZ among recurrent malignant glioma patients who are on and not on CYP-3A enzyme inducing anti-epileptic drugs (EIAEDs); 3. To evaluate for anti-tumor activity with this regimen in this patient population.
This is a Phase I study of Nanoliposomal CPT-11 in patients with Recurrent high-grade gliomas. Patients must have a histologically proven intracranial malignant glioma, which includes glioblastoma multiforme (GBM), gliosarcoma (GS), anaplastic astrocytoma (AA), anaplastic oligodendroglioma (AO), anaplastic mixed oligoastrocytoma (AMO), or malignant astrocytoma NOS (not otherwise specified). Patients who are wild type or heterozygous for the UGT1A1*28 gene will received Nanoliposomal CPT-11. The total anticipated accrual will be approximately 36 patients (depending upon the actual MTD). The investigators hypothesis is that this new formulation of CPT-11 will increase survival over that seen in historical controls who have recurrent gliomas because CPT-11 will be encapsulated in a liposome nanoparticle, which has been seen to reduce toxicities from the drug.
Background: In order to survive, brain tumors must have a network of blood vessels to supply it with oxygen and nutrients. The tumors produce substances that enable new blood vessels to form. Tandutinib and Bevacizumab are experimental drugs that may prevent new blood vessel formation and thereby slow or stop tumor growth in the brain. Objectives: To determine the safety and side effects of Tandutinib in combination with Bevacizumab in patients with brain tumors. To evaluate the response of brain tumors to treatment with Tandutinib and Bevacizumab. Eligibility: Patients 18 years of age and older with a malignant brain tumor for whom standard treatments (surgery, radiation and chemotherapy) are no longer effective. Design: Patients receive treatment in 4-week cycles as follows: Tandutinib by mouth twice a day every day and intravenous (through a vein) infusions of Bevacizumab over 90 minutes (or less if well tolerated) every 2 weeks. Treatment may continue for up to 1 year, and possibly longer, as long as there are no signs of tumor growth or serious treatment side effects. Patients are evaluated with magnetic resonance imaging (MRI), computed tomography (CT) and positron emission tomography (PET) scans before starting treatment and then periodically to determine the response to treatment. Patients have physical and neurological examinations every 4 weeks and blood tests every 2 weeks. They complete quality of life questionnaires every 4 weeks.
Subjects with newly diagnosed brain tumors who undergo surgical resection and whose pathology in the operating room shows a high grade glioma will be eligible. During a screening visit, the study will be discussed, inform consent discussed and signed, a medical history will be taken and a physical examination and laboratory tests will be performed. If these tests are all within acceptable ranges, the subject will be considered for inclusion on this treatment protocol. If the results of any tests are extremely different from normal expected values, she/he may not be able to participate. Prior to surgery, the subject will have a contrast enhanced MRI and MRS. The neurosurgeon will attempt to remove the majority of the tumor in the operating room and will send a portion of the specimen removed to the pathologist immediately. This is called a "frozen section". If the pathologist believes that the tumor is a high-grade malignant brain tumor, then the surgeon will place up to 8 dime-sized chemotherapy wafers in the tumor cavity of the brain. The remainder of the tumor specimen will be given to the pathologist to review more closely in the laboratory. If the frozen section does not show that the tumor is a high-grade malignant brain tumor, the subject will not receive the Gliadel wafers and will be removed from the study. The surgeon will then discuss with the subject the appropriate treatment options for the disease he or she has. During recovery in the hospital, another contrast enhanced MRI will be performed within the first 72 hours after surgery. This is a standard of care for patients who are not involved on this protocol as well. The subject will have another contrast enhanced MRI and MRS performed at the 21st Day after his or her surgery. After Day 21, He or she may begin other forms of treatment. The last contrast enhanced MRI and MRS assessment will be performed 12 weeks after the surgery and the implantation of the Gliadel wafers. Further MRI and MRS may be performed subsequently at the discretion of the doctor. Throughout the course of treatment, clinical data will be collected.
This phase I trial studies the side effects and best dose of carcinoembryonic antigen-expressing measles virus (MV-CEA) in treating patients with glioblastoma multiforme that has come back. A virus, called MV-CEA, which has been changed in a certain way, may be able to kill tumor cells without damaging normal cells.
Rationale: Standard therapy for anaplastic oligodendrogliomas and mixed oligoastrocytomas includes radiation and chemotherapy. However, due to the potential long-term central nervous system toxicity from radiation, researchers speculate that it may be better to reserve radiation therapy for progressive disease. In addition, some patients with anaplastic oligodendroglioma and mixed oligoastrocytoma have unusually chemosensitive tumors. Previous research indicates that brain tumor patients with a deletion of the 1p chromosome have a higher response to the chemotherapy drug temozolomide.
This phase I/II trial studies the side effects and best dose of melphalan when given together with carboplatin, etoposide phosphate, mannitol, and sodium thiosulfate and to see how well they work in treating patients with previously treated brain tumors. Drugs used in chemotherapy, such as melphalan, carboplatin, and etoposide phosphate, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing, or by stopping them from spreading. Osmotic blood-brain barrier disruption (BBBD) uses mannitol to open the blood vessels around the brain and allow cancer-killing substances to be carried directly to the brain. Sodium thiosulfate may help lessen or prevent hearing loss and toxicities in patients undergoing chemotherapy with carboplatin and BBBD. Giving carboplatin, melphalan, etoposide phosphate, mannitol, and sodium thiosulfate together may be an effective treatment for brain tumors.
The experimental anti-cancer drug IL13-PE38QQR, which is being developed for the treatment of malignant brain tumors, is composed of parts of two proteins: the immune system cytokine IL13 and a toxin from the bacterium Pseudomonas aeruginosa. The IL13 part of the drug binds to another protein, the IL13 receptor, when this receptor is displayed on the outside surface of cells. Cells with drug bound to the IL13 receptor take up the drug, and the toxin part of the drug then kills those cells. Since brain tumor cells display the IL13 receptor, they are potential targets that may be killed by this drug. This is a pilot study to visualize the distribution of IL13-PE38QQR infused into and around brain tumor tissue before and after surgical removal of the tumor in adult patients with recurrent malignant glioma. Stored tumor tissue will be tested for presence of the receptor protein, which is required for study entry. Eligible patients will then undergo biopsy to confirm the diagnosis of recurrent malignant glioma. IL13-PE38QQR will be infused for 96 hours into and around tumor tissue through catheters that have been placed surgically. For the first 48 hours the drug will be mixed with a radioactive tracer, so that the distribution of the drug can be followed by a type of scanning called SPECT. Surgery to remove the tumor will be performed approximately 15 days after the end of the infusion. Catheters will again be placed surgically, and IL13-PE38QQR will be infused a second time for 96 hours. Radioactive tracer will be included in the infusion for the first 48 hours. For both infusions, SPECT scans will be taken at 6, 24, and 48 hours after the start of infusion. MRI scans will be taken within 90 minutes of the 24 and 48 hour SPECT scans. Patients will be followed closely with further scans and laboratory tests until completion of the study approximately 58 days after completion of the second infusion.
To analyze the effect of Talampanel on progression free survival in patients with recurrent high grade gliomas.