View clinical trials related to Anaplastic Oligodendroglioma.
Filter by:enroll patients with histologically confirmed high-grade gliomas to evaluate the ability of regadenoson to transiently disrupt a relatively intact blood-brain barrier (BBB). determine the best dose of regadenoson to disrupt the BBB and allow for enhanced penetration of gadolinium during MRI.
This phase I trial studies the side effects and best dose of ascorbic acid when given together with temozolomide in treating patients with high-grade glioma that has come back. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ascorbic acid contains ingredients that may prevent or slow the growth of high-grade gliomas. Giving temozolomide with ascorbic acid may kill more tumor cells.
This is a single-center, open-label, non-randomized, Phase I/IIa study to investigate the safety, tolerability, and antitumor efficacy of AXL1717 (picropodophyllin as active agent formulated in an oral suspension; PPP) in patients with recurrent malignant astrocytomas (glioblastoma, gliosarcoma, anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic oligoastrocytoma, and anaplastic ependymoma). Patients will be treated for up to 5 cycles. A treatment cycle is defined as 28 days+7 days rest (28+7 days during cycle 1 to 4, and 28 days during cycle 5). The following cycle will not be started until the treatment continuation criteria are fulfilled. Concomitant supportive therapies will be allowed.
Background: - The blood-brain barrier helps to protect the central nervous system (brain and spinal cord) from harmful toxins, but also prevents potentially useful chemotherapy from reaching brain tumors. The barrier is formed by tight connections between blood vessel cells and molecules found on the surface of brain blood vessels such as Permeability-glycoprotein (Pgp). Pgp may influence whether patients with brain tumors known as gliomas respond to chemotherapy and what side effects they may experience. The compound (11C)N-desmethyl-loperamide ((11C)dLop) reacts to Pgp molecules, and therefore may be used with positron emission tomography (PET) imaging to study the blood brain barrier. Objectives: - To study the ability of PET imaging with (11C)dLop to evaluate the blood brain barrier in brain tumor patients. Eligibility: - Individuals at least 18 years of age who have a brain tumor with characteristics that may be imaged with techniques such as magnetic resonance imaging (MRI) andPET. Design: - Participants will be screened with a full physical examination and medical history, blood and urine tests, and tumor imaging studies (fluorodeoxyglucose PET and MRI scans with contrast agent). - The (11C)dLop scan will take 1 hour to perform. Participants will be asked to return for blood and urine tests approximately 24 hours after the PET scan. - Participants will have followup visits at least every 4 months by repeating a complete history and physical exam and brain MRI. Participants may have repeat scans with (11C)dLop at various points in the course of cancer treatment, but will not have these scans more than twice in a 12-month period. - Participants will be followed for as long as possible during treatment to see if imaging with (11C)dLop correlates with response to the treatments.
RATIONALE: Ritonavir and lopinavir may stop the growth of gliomas by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase II trial is studying how well giving ritonavir together with lopinavir works in treating patients with progressive or recurrent high-grade glioma.
To analyze the effect of Talampanel on progression free survival in patients with recurrent high grade gliomas.