Clinical Trials Logo

Anal, Colon, and Rectal Cancers clinical trials

View clinical trials related to Anal, Colon, and Rectal Cancers.

Filter by:
  • None
  • Page 1

NCT ID: NCT01137162 Terminated - Lung Cancer Clinical Trials

Clinical and Pathologic Studies of Patients Undergoing Treatment With EGFR Inhibitors

Start date: August 2008
Phase: N/A
Study type: Observational

Cetuximab, erlotinib, and panitumumab are all recently FDA approved epidermal growth factor receptor (EGFR) inhibitors that treat a wide variety of tumor types, such as colon, lung, and head and neck. Blockade of the EGFR results in inhibition of multiple downstream pathways, leading to slowed tumor growth. In addition, these inhibitors may enhance anti-tumor immune responses through uncharacterized mechanisms. While producing significant responses in many settings, EGFR inhibitors also result in significant skin toxicity (rash) in a high percentage of patients. Multiple studies have correlated the presence and severity of rash with clinical response. Unfortunately, severe rash can often lead to dose delays, reductions, or even discontinuation of EGFR inhibitors, thus limiting their efficacy. The mechanism of both the rash and its correlation with tumor response is poorly understood. Skin biopsies display a robust leukocyte infiltrate, but a systematic analysis of the type of infiltrating leukocytes, activation state, or homing receptor expression has not been performed. Chemokines and chemokine receptors control leukocyte trafficking to the skin and other tissue sites, and defined receptor profiles for skin-, gut-, and lung-homing leukocytes are well established. In this study, the investigators propose to evaluate the homing phenotype of leukocytes from peripheral blood and skin biopsies of patients receiving EGFR inhibitors. The investigators will use RNA microarrays to evaluate the expression of chemokines and other key genes regulated in skin during treatment. The investigators will utilize in vitro methods to investigate effects of EGFR inhibitors on imprinting of T cell tissue-specific homing receptors. The investigators will examine correlations among the pathologic data, clinical findings, and tumor response. If validated, peripheral blood evaluation could potentially be used as a predictive indicator for patients receiving EGFR inhibitors. This study may also identify novel targets for limiting skin toxicity while receiving EGFR inhibitors, thus allowing maximal dosing and clinical response from these agents.

NCT ID: NCT00780988 Withdrawn - Clinical trials for Colorectal Neoplasms

Feasibility of Autologous Tumor Cell-TLR9 Agonist Vaccination for Metastatic Colorectal Cancer

Start date: n/a
Phase: Phase 1
Study type: Interventional

Current therapies for metastatic colorectal cancer only prolong life for approximately 2 years. A more innovative therapy that prolongs life significantly or even cures is needed. Bone marrow transplantation is a curative therapy for patients with leukemias and lymphomas. Tumor eradication in the case of transplantation of the patient's own marrow (autologous transplantation) is based on the intensive chemotherapy and/or radiotherapy used for conditioning. Tumor eradication in the case of transplantation using the marrow of a normal donor is based on both tumor reduction from conditioning and the immune elimination of tumor cells by T cells in the donor transplant that recognize the foreign tissue antigens expressed by the tumor cells and kill these cells. The use of bone marrow transplantation to treat tumors other than leukemia and lymphoma has been limited, and studies of transplantation of the patient's own marrow for the treatment of advanced /metastatic breast cancer have not conclusively shown benefit beyond conventional therapy. Recently, the Strober lab developed a preclinical model that effectively treated colon cancer in mice by combining immunotherapy and autologous bone marrow transplantation in order to markedly augment the anti-tumor potency of immunotherapy. They used the CT26 colon cancer as the therapeutic target either as a single subcutaneous tumor nodule, as a disseminated tumor in the lungs and peritoneum, or as a metastatic tumor in the liver depending on the route of administration of the tumor cells in BALB/c mice. Mice were vaccinated mice with established primary tumors or disseminated/ metastatic disease with irradiated tumor cells mixed with the adjuvant CpG, and found that vaccination alone had no effect on tumor growth. Similarly radiation conditioning of tumor bearing hosts followed by transplantation of bone marrow and spleen cells or purified T cells and hematopoietic stem cells from unvaccinated donors of the same strain had no effect. In contrast, radiation conditioning of mice followed by transplantation of hematopoietic and immune cells from donors of the same strain vaccinated with tumor cells and CpG cured almost all subcutaneous primary as well as disseminated and metastatic tumors in the hosts. A similar result was obtained after autologous transplantation of hematopoietic and immune cells from tumor bearing mice that had been vaccinated after tumor establishment. Investigation of tumor infiltrating cells showed that the injected donor T cells do not accumulate in the tumors unless the host has been irradiated before injection. Based on this model, we have assembled a team of Stanford University faculty members with expertise in gastrointestinal cancers, immunotherapy, radiation oncology, and bone marrow transplantation in the Departments of Medicine and Pathology to translate the preclinical findings into a Phase I safety and feasibility clinical study for the treatment of 10 patients with metastatic colorectal cancer. Resected tumor cells will be irradiated and mixed with CpG to create a vaccine. Patients will receive subcutaneous vaccination at weeks 1 and 2 after resection. Six weeks later, immune T cells and then G-CSF "mobilized" purified blood progenitor cells will be harvested from the blood and cryopreserved. If needed patients will receive chemotherapy for tumor reduction. When disease is controlled off chemotherapy, patients will receive a conditioning regimen of fludarabine (30mg/m2 daily x 3 days) followed by intensive fractionated total body irradiation. The dose of fTBI will be escalated using a 3+3 design to ensure safety and will range from 400 to 800 gray. The patient will then undergo hematopoietic and immune cell rescue. They will undergo a third vaccination within 7-14 days after transplant. Thereafter, serial monitoring of tumor burden will continue. Immune monitoring will occur before and after vaccination as well as after transplantation. Tests will include in vitro anti-tumor immune responses of T cells (proliferation, cytotoxicity, cytokine secretion etc.) to stimulation with whole tumor cells and tumor cell lysates pulsed on to antigen presenting cells, anti-tumor antibody responses, and immune reconstitution after transplantation.

NCT ID: NCT00532909 Completed - Clinical trials for Colorectal Neoplasms

Phase I Vandetanib Plus Capecitabine, Oxaliplatin and Bevacizumab for Metastatic Colorectal Cancer

Start date: July 2006
Phase: Phase 1
Study type: Interventional

To determine the maximum tolerated dose of Vandetanib with a current standard first-line chemotherapy regimen, capecitabine and oxaliplatin without and then with bevacizumab for the first line treatment of metastatic colorectal cancer (CRC) and to define the dose limiting toxicities associated with the combination.