View clinical trials related to Adult Glioblastoma.
Filter by:This phase II trial is studying how well AZD2171 works in treating patients with recurrent glioblastoma multiforme. AZD2171 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor
This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.
This phase II trial is studying how well vorinostat works in treating patients with progressive or recurrent glioblastoma multiforme. Drugs used in chemotherapy, such as vorinostat, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving vorinostat before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving it after surgery may kill any remaining tumor cells.
Cilengitide may stop the growth of glioblastoma multiforme by blocking blood flow to the tumor. Giving cilengitide before and after surgery may be an effective treatment for glioblastoma multiforme. This phase II trial is studying how well cilengitide works in treating patients who are undergoing surgery for recurrent or progressive glioblastoma multiforme.
Erlotinib and temsirolimus and may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. This phase I/II trial is studying the side effects and best dose of temsirolimus when given together with erlotinib and to see how well they work in treating patients with recurrent malignant glioma.
This phase I trial is studying the side effects of fluorine F18 EF5 when given during positron emission tomography to find oxygen in tumor cells of patients who are undergoing surgery or biopsy for newly diagnosed brain tumors. Diagnostic procedures using fluorine F 18 EF5 and positron emission tomography to detect tumor hypoxia may help in planning cancer treatment
Cilengitide may stop the growth of cancer by stopping blood flow to the tumor. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to damage tumor cells. Giving cilengitide together with temozolomide and radiation therapy may kill more tumor cells. This randomized phase I/II trial is studying the side effects and best dose of cilengitide when given together with temozolomide and radiation therapy and to compare how well they work in treating patients with newly diagnosed glioblastoma multiforme
This randomized phase II trial is studying how well neoadjuvant and adjuvant fenretinide works compared to adjuvant fenretinide alone in treating patients who are undergoing surgical resection for recurrent glioblastoma multiforme. Chemotherapy drugs, such as fenretinide, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving chemotherapy before surgery may shrink the tumor so that it can be removed. Giving chemotherapy after surgery may kill any remaining tumor cells. It is not yet known whether neoadjuvant and adjuvant fenretinide is more effective than adjuvant fenretinide alone
Phase II trial to study the effectiveness of combining tipifarnib with radiation therapy in treating patients who have newly diagnosed glioblastoma multiforme. Tipifarnib may stop the growth of tumor cells by blocking the enzymes necessary for tumor cell growth. Radiation therapy uses high-energy x-rays to damage tumor cells. Combining tipifarnib with radiation therapy may make the tumor cells more sensitive to radiation therapy and may kill more tumor cells.
This phase I/II trial studies the side effects and best dose of gefitinib when given together with radiation therapy and to see how well it works in treating patients with glioblastoma multiforme. Gefitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x rays to kill tumor cells. Giving gefitinib together with radiation therapy may be an effective treatment for glioblastoma multiforme.