View clinical trials related to Adult Glioblastoma.
Filter by:This randomized phase II trial studies how well dose-escalated photon intensity-modulated radiation therapy (IMRT) or proton beam radiation therapy works compared with standard-dose radiation therapy when given with temozolomide in patients with newly diagnosed glioblastoma. Radiation therapy uses high-energy x-rays and other types of radiation to kill tumor cells and shrink tumors. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs, such as temozolomide, may make tumor cells more sensitive to radiation therapy. It is not yet known whether dose-escalated photon IMRT or proton beam radiation therapy is more effective than standard-dose radiation therapy with temozolomide in treating glioblastoma.
This phase I trial studies the side effects and best dose of raptor/rictor-mammalian target of rapamycin (mTOR) (TORC1/2) inhibitor MLN0128 when given in combination with bevacizumab in treating patients with glioblastoma, a type of brain tumor, or a solid tumor that has spread and not responded to standard treatment. TORC1/2 inhibitor MLN0128 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Bevacizumab may also stop the progression of tumors by blocking the growth of new blood vessels necessary for tumor growth.
RATIONALE: New imaging procedures, such as fluorine F 18 fluorodopa-labeled PET scan, may help in guiding surgery and radiation therapy and allow doctors to plan better treatment. PURPOSE: This clinical trial studies fluorine F 18 fluorodopa-labeled PET scan in planning surgery and radiation therapy in treating patients with newly diagnosed high- or low-grade malignant glioma
This phase II trial is studying how well gamma-secretase/Notch signalling pathway inhibitor RO4929097 works in treating patients with recurrent or progressive glioblastoma. Gamma-secretase/Notch signalling pathway inhibitor RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well bendamustine hydrochloride works in treating patients with anaplastic glioma or glioblastoma that has come back (recurrent) or growing, spreading or getting worse (progressive). Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.
This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.
Phase I/II trial to study the effectiveness of erlotinib in treating patients who have recurrent malignant glioma or recurrent or progressive meningioma. Erlotinib may stop the growth of tumor cells by blocking the enzymes necessary for tumor cell growth.