Clinical Trials Logo

Acute Undifferentiated Leukemia clinical trials

View clinical trials related to Acute Undifferentiated Leukemia.

Filter by:
  • Recruiting  
  • Page 1

NCT ID: NCT05589896 Recruiting - Clinical trials for Acute Myeloid Leukemia

A First-in-Human Study of HLA-Partially to Fully Matched Allogenic Cryopreserved Deceased Donor Bone Marrow Transplantation for Patients With Hematologic Malignancies

Start date: March 30, 2024
Phase: Phase 1/Phase 2
Study type: Interventional

The goal of this clinical trial is to determine the safety and feasibility of allogeneic transplantation with bone marrow from a deceased donor in patients with acute leukemias. Patients will either receive myeloablative conditioning or reduced intensity conditioning regimen prior to the transplant. Patients will be followed for 56 days for safety endpoints and remain in follow-up for one year.

NCT ID: NCT05476770 Recruiting - Hodgkin Lymphoma Clinical Trials

Tagraxofusp in Pediatric Patients With Relapsed or Refractory CD123 Expressing Hematologic Malignancies

Start date: November 11, 2022
Phase: Phase 1
Study type: Interventional

Tagraxofusp is a protein-drug conjugate consisting of a diphtheria toxin redirected to target CD123 has been approved for treatment in pediatric and adult patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). This trial aims to examine the safety of this novel agent in pediatric patients with relapsed/refractory hematologic malignancies. The mechanism by which tagraxofusp kills cells is distinct from that of conventional chemotherapy. Tagraxofusp directly targets CD123 that is present on tumor cells, but is expressed at lower or levels or absent on normal hematopoietic stem cells. Tagraxofusp also utilizes a payload that is not cell cycle dependent, making it effective against both highly proliferative tumor cells and also quiescent tumor cells. The rationale for clinical development of tagraxofusp for pediatric patients with hematologic malignancies is based on the ubiquitous and high expression of CD123 on many of these diseases, as well as the highly potent preclinical activity and robust clinical responsiveness in adults observed to date. This trial includes two parts: a monotherapy phase and a combination chemotherapy phase. This design will provide further monotherapy safety data and confirm the FDA approved pediatric dose, as well as provide safety data when combined with chemotherapy. The goal of this study is to improve survival rates in children and young adults with relapsed hematological malignancies, determine the recommended phase 2 dose (RP2D) of tagraxofusp given alone and in combination with chemotherapy, as well as to describe the toxicities, pharmacokinetics, and pharmacodynamic properties of tagraxofusp in pediatric patients. About 54 children and young adults will participate in this study. Patients with Down syndrome will be included in part 1 of the study.

NCT ID: NCT05322850 Recruiting - Clinical trials for Acute Myeloid Leukemia

Phase I/II Trial: Engineered Donor Graft (Orca Q) for Pediatric Hematopoietic Cell Transplant (HCT)

Start date: August 16, 2022
Phase: Phase 1/Phase 2
Study type: Interventional

This is a first in children prospective study of allogeneic hematopoietic cell transplant using a centrally manufactured engineered donor graft (Orca-Q). The study will assess safety and efficacy of Orca-Q in pediatric patients with hematologic malignancies.

NCT ID: NCT03779854 Recruiting - Clinical trials for Acute Lymphoblastic Leukemia

Naive T Cell Depletion for Preventing Chronic Graft-versus-Host Disease in Children and Young Adults With Blood Cancers Undergoing Donor Stem Cell Transplant

Start date: August 29, 2019
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body's normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.