Clinical Trials Logo

Acute Undifferentiated Leukemia clinical trials

View clinical trials related to Acute Undifferentiated Leukemia.

Filter by:

NCT ID: NCT05589896 Recruiting - Clinical trials for Acute Myeloid Leukemia

A First-in-Human Study of HLA-Partially to Fully Matched Allogenic Cryopreserved Deceased Donor Bone Marrow Transplantation for Patients With Hematologic Malignancies

Start date: March 30, 2024
Phase: Phase 1/Phase 2
Study type: Interventional

The goal of this clinical trial is to determine the safety and feasibility of allogeneic transplantation with bone marrow from a deceased donor in patients with acute leukemias. Patients will either receive myeloablative conditioning or reduced intensity conditioning regimen prior to the transplant. Patients will be followed for 56 days for safety endpoints and remain in follow-up for one year.

NCT ID: NCT05476770 Recruiting - Hodgkin Lymphoma Clinical Trials

Tagraxofusp in Pediatric Patients With Relapsed or Refractory CD123 Expressing Hematologic Malignancies

Start date: November 11, 2022
Phase: Phase 1
Study type: Interventional

Tagraxofusp is a protein-drug conjugate consisting of a diphtheria toxin redirected to target CD123 has been approved for treatment in pediatric and adult patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN). This trial aims to examine the safety of this novel agent in pediatric patients with relapsed/refractory hematologic malignancies. The mechanism by which tagraxofusp kills cells is distinct from that of conventional chemotherapy. Tagraxofusp directly targets CD123 that is present on tumor cells, but is expressed at lower or levels or absent on normal hematopoietic stem cells. Tagraxofusp also utilizes a payload that is not cell cycle dependent, making it effective against both highly proliferative tumor cells and also quiescent tumor cells. The rationale for clinical development of tagraxofusp for pediatric patients with hematologic malignancies is based on the ubiquitous and high expression of CD123 on many of these diseases, as well as the highly potent preclinical activity and robust clinical responsiveness in adults observed to date. This trial includes two parts: a monotherapy phase and a combination chemotherapy phase. This design will provide further monotherapy safety data and confirm the FDA approved pediatric dose, as well as provide safety data when combined with chemotherapy. The goal of this study is to improve survival rates in children and young adults with relapsed hematological malignancies, determine the recommended phase 2 dose (RP2D) of tagraxofusp given alone and in combination with chemotherapy, as well as to describe the toxicities, pharmacokinetics, and pharmacodynamic properties of tagraxofusp in pediatric patients. About 54 children and young adults will participate in this study. Patients with Down syndrome will be included in part 1 of the study.

NCT ID: NCT05326516 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

A Study of SNDX-5613 in Combination With Chemotherapy in Participants With R/R Acute Leukemia

Start date: March 9, 2022
Phase: Phase 1
Study type: Interventional

The purpose of this study is to determine the safety and tolerability of SNDX-5613 when given in combination with 2 different chemotherapy regimens in participants with relapsed/refractory acute leukemias harboring KMT2A rearrangement, KMT2A amplification, NPM1c, or NUP98r.

NCT ID: NCT05322850 Recruiting - Clinical trials for Acute Myeloid Leukemia

Phase I/II Trial: Engineered Donor Graft (Orca Q) for Pediatric Hematopoietic Cell Transplant (HCT)

Start date: August 16, 2022
Phase: Phase 1/Phase 2
Study type: Interventional

This is a first in children prospective study of allogeneic hematopoietic cell transplant using a centrally manufactured engineered donor graft (Orca-Q). The study will assess safety and efficacy of Orca-Q in pediatric patients with hematologic malignancies.

NCT ID: NCT05170828 Withdrawn - Clinical trials for Acute Myeloid Leukemia

Cryopreserved MMUD BM With PTCy for Hematologic Malignancies

Start date: September 2022
Phase: Phase 1
Study type: Interventional

Multicenter single arm study to assess the safety and efficacy of allogeneic transplantation using cryopreserved bone marrow from deceased MMUD and PTCy, sirolimus and MMF for GVHD prophylaxis.

NCT ID: NCT05068401 Not yet recruiting - Clinical trials for Acute Myeloid Leukemia

Cryopreserved MMUD BM With PTCy for Hematologic Malignancies

Start date: March 2022
Phase: Phase 1
Study type: Interventional

This is a multi-phase, multi-center, single arm, prospective study designed to establish the safety and efficacy of human leukocyte antigen (HLA)-mismatched unrelated cryopreserved deceased donor bone marrow transplantation (BMT) with post-transplantation cyclophosphamide for patients with hematologic malignancies.

NCT ID: NCT03779854 Recruiting - Clinical trials for Acute Lymphoblastic Leukemia

Naive T Cell Depletion for Preventing Chronic Graft-versus-Host Disease in Children and Young Adults With Blood Cancers Undergoing Donor Stem Cell Transplant

Start date: August 29, 2019
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body's normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.

NCT ID: NCT03326921 Suspended - Leukemia Clinical Trials

HA-1 T TCR T Cell Immunotherapy for the Treatment of Patients With Relapsed or Refractory Acute Leukemia After Donor Stem Cell Transplant

Start date: February 23, 2018
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of CD4+ and CD8+ HA-1 T cell receptor (TCR) (HA-1 T TCR) T cells in treating patients with acute leukemia that persists, has come back (recurrent) or does not respond to treatment (refractory) following donor stem cell transplant. T cell receptor is a special protein on T cells that helps them recognize proteins on other cells including leukemia. HA-1 is a protein that is present on the surface of some peoples' blood cells, including leukemia. HA-1 T cell immunotherapy enables genes to be added to the donor cells to make them recognize HA-1 markers on leukemia cells.

NCT ID: NCT02220985 Active, not recruiting - Clinical trials for Refractory Acute Myeloid Leukemia

Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts From HLA-Matched Related and Unrelated Donors in Preventing GVHD

Start date: February 3, 2015
Phase: Phase 2
Study type: Interventional

This phase II trial is for patients with acute lymphocytic leukemia, acute myeloid leukemia, myelodysplastic syndrome or chronic myeloid leukemia who have been referred for a peripheral blood stem cell transplantation to treat their cancer. In these transplants, chemotherapy and total-body radiotherapy ('conditioning') are used to kill residual leukemia cells and the patient's normal blood cells, especially immune cells that could reject the donor cells. Following the chemo/radiotherapy, blood stem cells from the donor are infused. These stem cells will grow and eventually replace the patient's original blood system, including red cells that carry oxygen to our tissues, platelets that stop bleeding from damaged vessels, and multiple types of immune-system white blood cells that fight infections. Mature donor immune cells, especially a type of immune cell called T lymphocytes (or T cells) are transferred along with these blood-forming stem cells. T cells are a major part of the curative power of transplantation because they can attack leukemia cells that have survived the chemo/radiation therapy and also help to fight infections after transplantation. However, donor T cells can also attack a patient's healthy tissues in an often-dangerous condition known as Graft-Versus-Host-Disease (GVHD). Drugs that suppress immune cells are used to decrease the severity of GVHD; however, they are incompletely effective and prolonged immunosuppression used to prevent and treat GVHD significantly increases the risk of serious infections. Removing all donor T cells from the transplant graft can prevent GVHD, but doing so also profoundly delays infection-fighting immune reconstitution and eliminates the possibility that donor immune cells will kill residual leukemia cells. Work in animal models found that depleting a type of T cell, called naïve T cells or T cells that have never responded to an infection, can diminish GVHD while at least in part preserving some of the benefits of donor T cells including resistance to infection and the ability to kill leukemia cells. This clinical trial studies how well the selective removal of naïve T cells works in preventing GVHD after peripheral blood stem cell transplants. This study will include patients conditioned with high or medium intensity chemo/radiotherapy who can receive donor grafts from related or unrelated donors.

NCT ID: NCT02135874 Completed - Clinical trials for Mixed Phenotype Acute Leukemia

Clofarabine, Idarubicin, Cytarabine, Vincristine Sulfate, and Dexamethasone in Treating Patients With Newly Diagnosed or Relapsed Mixed Phenotype Acute Leukemia

Start date: October 27, 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well clofarabine, idarubicin, cytarabine, vincristine sulfate, and dexamethasone work in treating patients with mixed phenotype acute leukemia that is newly diagnosed or has returned after a period of improvement (relapsed). Drugs used in chemotherapy, such as clofarabine, idarubicin, cytarabine, vincristine sulfate, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.