Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02771197
Other study ID # NSH 1150
Secondary ID
Status Completed
Phase Phase 2
First received
Last updated
Start date September 28, 2016
Est. completion date July 31, 2023

Study information

Verified date September 2023
Source Northside Hospital, Inc.
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

AML is the most common acute leukemia in adults. Most patients can undergo allogeneic stem cell transplantation as a possible cure; however, many patients are not candidates for allogeneic transplant due to age, overall health, psychosocial factors, and/or lack of available donors. Therefore, these patients are unable to receive the therapeutic benefits of the "graft-versus-leukemia" effect of donor immune cells. The aim of this study is to hopefully break immune tolerance to AML cells to provide better outcomes in patients with non-favorable risk AML.


Description:

Non-favorable risk AML patients will undergo a preparative regimen of lymphodepletion of Flu/Mel followed by autologous transplantation. Anti-PD-1 therapy of pembrolizumab will begin on Day +1 following stem cell transplantation and will be administered every 3 weeks for a total of 8 doses. According to the literature, the risk of 2-year relapse is estimated to be 60-80% in patients with non-favorable risk AML in CR-1. With this protocol, investigators hypothesize that following lymphodepleting chemotherapy and pembrolizumab, the 2-year relapse risk will decrease to less than or equal to 35%. The one-sided Wald test at 5% significance level will be used to test the hypothesis. The size of 20 patients yields the power of 90.5% assuming that the actual 2-year leukemia-free survival is 60%.


Recruitment information / eligibility

Status Completed
Enrollment 20
Est. completion date July 31, 2023
Est. primary completion date August 3, 2022
Accepts healthy volunteers No
Gender All
Age group 18 Years to 78 Years
Eligibility Inclusion Criteria: - Non-favorable risk AML - In CR-1 or subsequent CR - Completed at least one cycle of consolidation chemotherapy - Collection of at least 2x106/kg CD34+ cells - KPS of 70% or greater Exclusion Criteria: - Received investigational agent within 4 weeks of first dose - Prior chemotherapy, radiation therapy within 2 weeks of first dose - Hypersensitivity to pembrolizumab or any of its excipients - Received prior therapy with anti-PD-1, anti-PD-L1, or anti-PD-L2 agent

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Fludarabine

Melphalan

Pembrolizumab


Locations

Country Name City State
United States Blood and Marrow Transplant Group of Georgia Atlanta Georgia
United States Northside Hospital Atlanta Georgia

Sponsors (2)

Lead Sponsor Collaborator
Northside Hospital, Inc. Merck Sharp & Dohme LLC

Country where clinical trial is conducted

United States, 

References & Publications (23)

Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, Rosenberg SA. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009 Aug 20;114(8):1537-44. doi: 10.1182/b — View Citation

Bracci L, Moschella F, Sestili P, La Sorsa V, Valentini M, Canini I, Baccarini S, Maccari S, Ramoni C, Belardelli F, Proietti E. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expr — View Citation

Chen X, Liu S, Wang L, Zhang W, Ji Y, Ma X. Clinical significance of B7-H1 (PD-L1) expression in human acute leukemia. Cancer Biol Ther. 2008 May;7(5):622-7. doi: 10.4161/cbt.7.5.5689. — View Citation

Cornelissen JJ, van Putten WL, Verdonck LF, Theobald M, Jacky E, Daenen SM, van Marwijk Kooy M, Wijermans P, Schouten H, Huijgens PC, van der Lelie H, Fey M, Ferrant A, Maertens J, Gratwohl A, Lowenberg B. Results of a HOVON/SAKK donor versus no-donor ana — View Citation

Dong H, Chen L. B7-H1 pathway and its role in the evasion of tumor immunity. J Mol Med (Berl). 2003 May;81(5):281-7. doi: 10.1007/s00109-003-0430-2. Epub 2003 Apr 30. — View Citation

Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA. Cancer regression and — View Citation

Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA. A — View Citation

Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T. Engagement of the PD-1 immunoinhibitory receptor by a — View Citation

Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, Zhou J, Li BZ, Shi YH, Xiao YS, Xu Y, Fan J. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2 — View Citation

Ghebeh H, Barhoush E, Tulbah A, Elkum N, Al-Tweigeri T, Dermime S. FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: Implication for immunotherapy. BMC Cancer. 2008 Feb 23;8:57. doi: 10.1186/1 — View Citation

Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc — View Citation

Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M. B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res. 2004 Aug 1;10(15):5094-100. — View Citation

Koreth J, Schlenk R, Kopecky KJ, Honda S, Sierra J, Djulbegovic BJ, Wadleigh M, DeAngelo DJ, Stone RM, Sakamaki H, Appelbaum FR, Dohner H, Antin JH, Soiffer RJ, Cutler C. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete re — View Citation

Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, Saudemont A, Quesnel B. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-gamma and TLR ligands via a MyD88-, TRAF6-, an — View Citation

Mumprecht S, Schurch C, Schwaller J, Solenthaler M, Ochsenbein AF. Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood. 2009 Aug 20;114(8):1528-36. doi: 10.1182/blood-2008-0 — View Citation

Shenghui Z, Yixiang H, Jianbo W, Kang Y, Laixi B, Yan Z, Xi X. Elevated frequencies of CD4(+) CD25(+) CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int J Cancer. 2011 Sep 15;129(6):1373-81. doi: 10.100 — View Citation

Shvets A, Chakrabarti R, Gonzalez-Quintial R, Baccala R, Theofilopoulos AN, Prud'homme GJ. Impaired negative regulation of homeostatically proliferating T cells. Blood. 2009 Jan 15;113(3):622-5. doi: 10.1182/blood-2008-03-139964. Epub 2008 Nov 20. — View Citation

Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A, Foon KA, Whiteside TL, Boyiadzis M. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res. 2009 May 15;15(10):3325 — View Citation

Wang X, Zheng J, Liu J, Yao J, He Y, Li X, Yu J, Yang J, Liu Z, Huang S. Increased population of CD4(+)CD25(high), regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients. Eur J Haemat — View Citation

Wrzesinski C, Paulos CM, Gattinoni L, Palmer DC, Kaiser A, Yu Z, Rosenberg SA, Restifo NP. Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J Clin Invest. 2007 Feb;117(2):492-501. doi: 10.1172/JC — View Citation

Wrzesinski C, Paulos CM, Kaiser A, Muranski P, Palmer DC, Gattinoni L, Yu Z, Rosenberg SA, Restifo NP. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J Immunother. 2010 Jan;33(1):1-7 — View Citation

Zhou Q, Bucher C, Munger ME, Highfill SL, Tolar J, Munn DH, Levine BL, Riddle M, June CH, Vallera DA, Weigel BJ, Blazar BR. Depletion of endogenous tumor-associated regulatory T cells improves the efficacy of adoptive cytotoxic T-cell immunotherapy in mur — View Citation

Zhou Q, Munger ME, Highfill SL, Tolar J, Weigel BJ, Riddle M, Sharpe AH, Vallera DA, Azuma M, Levine BL, June CH, Murphy WJ, Munn DH, Blazar BR. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred — View Citation

* Note: There are 23 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Number of Patients With 2-year Relapse Risk Hypothesis is that following lymphodepleting chemotherapy and pembrolizumab, the 2-year relapse risk will decrease to =35% 2 years
Secondary Assess Safety of Pembrolizumab by Recording the Number of Participants With Treatment-related Adverse Events Assess safety of pembrolizumab in patients with AML following lymphodepleting chemotherapy 6 months
See also
  Status Clinical Trial Phase
Suspended NCT05400122 - Natural Killer (NK) Cells in Combination With Interleukin-2 (IL-2) and Transforming Growth Factor Beta (TGFbeta) Receptor I Inhibitor Vactosertib in Cancer Phase 1
Recruiting NCT04460235 - Immunogenicity of an Anti-pneumococcal Combined Vaccination in Acute Leukemia or Lymphoma Phase 4
Active, not recruiting NCT03678493 - A Study of FMT in Patients With AML Allo HSCT in Recipients Phase 2
Completed NCT04022785 - PLX51107 and Azacitidine in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome Phase 1
Recruiting NCT05424562 - A Study to Assess Change in Disease State in Adult Participants With Acute Myeloid Leukemia (AML) Ineligible for Intensive Chemotherapy Receiving Oral Venetoclax Tablets in Canada
Terminated NCT03224819 - Study of Emerfetamab (AMG 673) in Adults With Relapsed/Refractory Acute Myeloid Leukemia (AML) Early Phase 1
Completed NCT03197714 - Clinical Trial of OPB-111077 in Patients With Relapsed or Refractory Acute Myeloid Leukaemia Phase 1
Active, not recruiting NCT03844048 - An Extension Study of Venetoclax for Subjects Who Have Completed a Prior Venetoclax Clinical Trial Phase 3
Active, not recruiting NCT04070768 - Study of the Safety and Efficacy of Gemtuzumab Ozogamicin (GO) and Venetoclax in Patients With Relapsed or Refractory CD33+ Acute Myeloid Leukemia:Big Ten Cancer Research Consortium BTCRC-AML17-113 Phase 1
Active, not recruiting NCT04107727 - Trial to Compare Efficacy and Safety of Chemotherapy/Quizartinib vs Chemotherapy/Placebo in Adults FMS-like Tyrosine Kinase 3 (FLT3) Wild-type Acute Myeloid Leukemia (AML) Phase 2
Recruiting NCT04385290 - Combination of Midostaurin and Gemtuzumab Ozogamicin in First-line Standard Therapy for Acute Myeloid Leukemia (MOSAIC) Phase 1/Phase 2
Recruiting NCT04920500 - Bioequivalence of Daunorubicin Cytarabine Liposomes in Naive AML Patients N/A
Recruiting NCT03897127 - Study of Standard Intensive Chemotherapy Versus Intensive Chemotherapy With CPX-351 in Adult Patients With Newly Diagnosed AML and Intermediate- or Adverse Genetics Phase 3
Active, not recruiting NCT04021368 - RVU120 in Patients With Acute Myeloid Leukemia or High-risk Myelodysplastic Syndrome Phase 1
Recruiting NCT03665480 - The Effect of G-CSF on MRD After Induction Therapy in Newly Diagnosed AML Phase 2/Phase 3
Completed NCT02485535 - Selinexor in Treating Patients With Intermediate- and High-Risk Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome After Transplant Phase 1
Enrolling by invitation NCT04093570 - A Study for Participants Who Participated in Prior Clinical Studies of ASTX727 (Standard Dose), With a Food Effect Substudy at Select Study Centers Phase 2
Recruiting NCT04069208 - IA14 Induction in Young Acute Myeloid Leukemia Phase 2
Recruiting NCT05744739 - Tomivosertib in Relapsed or Refractory Acute Myeloid Leukemia (AML) Phase 1
Recruiting NCT04969601 - Anti-Covid-19 Vaccine in Children With Acute Leukemia and Their Siblings Phase 1/Phase 2