Clinical Trials Logo

Acidosis clinical trials

View clinical trials related to Acidosis.

Filter by:

NCT ID: NCT05784389 Recruiting - Kidney Diseases Clinical Trials

Reduction of Metabolic Acidosis in Patients With Chronic Kidney Disease in Stage 4 and 5

REMA-CKD
Start date: March 27, 2023
Phase: N/A
Study type: Interventional

This clinical trial aims to investigate and test the effect of an acid/base diet in chronic kidney disease (CKD) patients, CKD stage 4 and 5. The trial is guided by the hypothesis that an acid/base diet will reduce the degree of acidosis and simultaneously reduce the need for bicarbonate supplements.

NCT ID: NCT05752279 Not yet recruiting - Clinical trials for Diabetic Ketoacidosis

Balanced Multi-Electrolyte Solution Versus Saline Trial for Diabetic KetoAcidosis

BEST-DKA
Start date: March 2024
Phase: Phase 3
Study type: Interventional

The goal of this blinded, cluster cross-over, randomised controlled trial is to determine whether fluid therapy with Plasma-Lyte® 148 increases the number of days alive and days out of hospital to day-28 compared to 0.9% sodium chloride ('0.9% saline') in critically ill patients presenting to the Emergency Department (ED) and deemed to require admission to a critical care area (ICU, HDU) with moderate to severe diabetic ketoacidosis (DKA).

NCT ID: NCT05697770 Recruiting - Shock Clinical Trials

SODium BICarbonate for Metabolic Acidosis in the ICU

SODa-BIC
Start date: April 26, 2023
Phase: Phase 3
Study type: Interventional

This trial aims to assess if, among adults in the ICU with metabolic acidosis, an infusion of sodium bicarbonate diluted in 5% dextrose, compared with an infusion of 5% dextrose, reduces Major Adverse Kidney Events within 30 days of randomization.

NCT ID: NCT05687474 Recruiting - Cystic Fibrosis Clinical Trials

Baby Detect : Genomic Newborn Screening

Start date: September 1, 2022
Phase:
Study type: Observational

Newborn screening (NBS) is a global initiative of systematic testing at birth to identify babies with pre-defined severe but treatable conditions. With a simple blood test, rare genetic conditions can be easily detected, and the early start of transformative treatment will help avoid severe disabilities and increase the quality of life. Baby Detect Project is an innovative NBS program using a panel of target sequencing that aims to identify 126 treatable severe early onset genetic diseases at birth caused by 361 genes. The list of diseases has been established in close collaboration with the Paediatricians of the University Hospital in Liege. The investigators use dedicated dried blood spots collected between the first day and 28 days of life of babies, after a consent sign by parents.

NCT ID: NCT05669313 Completed - Trauma Clinical Trials

The Effects of Hypothermia and Acidosis on Coagulation During Treatment With Rivaroxaban Measured With ROTEM

Start date: September 4, 2022
Phase:
Study type: Observational

Rivaroxaban, a non-vitamin K oral anticoagulants, is increasingly used to prevent stroke in patients with atrium fibrillation. It has previously been demonstrated that a point-of-care coagulation instrument (ROTEM) can detect the effects of rivaroxaban. Further, the ROTEM instrument can also detect the effects of hypothermia and acidosis. Given that trauma induced coagulopathy is enhanced by both hypothermia, acidosis and rivaroxaban, the investigators want to investigate any synergistic effects between hypothermia or acidosis and rivaroxaban. In an attempt to do so the investigators designed the current experimental study with the purpose to investigate the effects of rivaroxaban together with hypothermia or acidosis using the ROTEM assay EXTEM. The hypothesis is that a synergistic prolongation of hypothermia or acidosis and rivaroxaban can be detected in the initiation of clot formation demonstrated in the primary outcome variable, clotting time of the ROTEM assay EXTEM. Secondary outcome variables include direct effect on clotting time and direct and synergistic effects on clot formation time and alfa angle of hypothermia and acidosis detected in the ROTEM assay EXTEM.

NCT ID: NCT05582824 Recruiting - Metabolism Clinical Trials

Lactate Metabolism in the Hypoperfused Critically Ill

Start date: September 15, 2022
Phase:
Study type: Observational

Investigating lactate metabolism in critically ill patients whom are hypoperfused by preforming metabolomics via liquid chromatography-mass spectrometry.

NCT ID: NCT05508490 Not yet recruiting - Clinical trials for AKI in Diabetic Ketoacidosis

Prevalence of Acute Kidney Injury in Patients With Diabetic Ketoacidosis

Start date: January 1, 2023
Phase:
Study type: Observational

prevalence of acute kidney injury in patients with diabetic ketoacidosis

NCT ID: NCT05488262 Active, not recruiting - Ketoacidosis Clinical Trials

Management in Intensive Care Unit of Life-threatening Keto-Acidosis

MILKA
Start date: February 2, 2024
Phase:
Study type: Observational

Patients hospitalized in intensive care between January 2014 and September 2021 for ketoacidosis complicated by organ failure in participating departments.

NCT ID: NCT05443802 Recruiting - Clinical trials for Diabetic Ketoacidosis

Comparison of a Low Dose to a Standard Dose of Insulin in Adult DKA in ICU to Reduce Metabolic Complications

LOSTINDIAB
Start date: August 16, 2022
Phase: N/A
Study type: Interventional

Diabetic ketoacidosis (DKA), a frequent complication of diabetes, is the consequence of a profound insulin deficiency responsible for osmotic polyuria and thus major losses of water, glucose, sodium and potassium as well as a metabolic acidosis due to the uncontrolled production of ketonic acids. Management includes fluid replacement, insulin therapy and correction of metabolic disorders (including potassium loss). Initially described in patients with type 1 diabetes (T1D), it is now often observed in patients with type 2 diabetes (T2D) in whom it is more a matter of insulin resistance than an absolute deficiency. However, international guidelines recommend a similar dose of intravenous insulin (0.10 IU/kg/hour) regardless of the type of diabetes. During treatment, metabolic complications are frequent and potentially serious, especially in T2D due to cardiovascular comorbidities. The research hypothesis is that decreasing the insulin dose will reduce metabolic complications without influencing time to resolution in adult patients, regardless of diabetes type.

NCT ID: NCT05439928 Not yet recruiting - Clinical trials for Diabetic Ketoacidosis

Remote Glucose Monitoring System in Hospitalized Patients With Diabetic Ketoacidosis (DKA)

Start date: July 2022
Phase: N/A
Study type: Interventional

The purpose of this research study is to investigate the use of continuous glucose monitoring (CGM) device DEXCOM G6 in non-critically patients treated for diabetic emergency such as diabetic ketoacidosis (DKA). Patients who have DKA require hourly monitoring of glucose (sugar) level which traditionally requires admission to the intensive care unit (ICU) for hourly fingerstick monitoring. With the use of CGM device, in this research study hourly fingerstick monitoring is replaced by continuous glucose monitor (CGM) which provides glucose levels continuously in real time for nurses and provider. The investigators are testing to see if in the future patients can be treated in the stepdown unit (an intermediate care level between the intensive care unit and the general medical unit) if they do not require higher level of care besides hourly glucose monitoring. Continuous glucose monitoring (CGM) device DEXCOM G6 currently FDA Approved for patients with diabetes and is widely used for glucose monitoring in patients with diabetes in the outpatient setting. The investigators want to study the use of the DEXCOM G6 CGM in the inpatient setting to monitoring glucose levels remotely in the treatment of diabetic emergencies such as diabetic ketoacidosis and compare their care to those receiving hourly fingerstick glucose monitoring in the ICU.