Clinical Trials Logo

Clinical Trial Summary

Early rehabilitation protocols have been studied in Achilles tendon (AT) rupture patients, but deficits in tendon biomechanical properties have been observed several years after the injury. AT rupture patients are unable to return to their previous levels of physical activity. They present deleterious adaptations in the plantar flexor muscles that lead to functional deficits, and deficits in the tendon's structural and mechanical properties. Eccentric contractions have been suggested to recover these muscle properties. This contraction is known to produce higher force compared to isometric and concentric contractions, and increases tendon stiffness. However, there is a lack of studies showing the effects of the eccentric training in AT rupture rehabilitation. We want to know if an isokinetic eccentric training program will determine the desired adaptations on triceps surae muscle-tendon unit's properties in patients subjected to the AT surgical repair. More specifically, the aim of this study is verifying the effects of a 12-week eccentric training program on triceps surae muscle-tendon unit's properties in subjects that were subjected to the AT surgical repair. 30 subjects will be randomized in two groups: (1) isokinetic eccentric training; and (2) traditional eccentric training control group. All participants will be submitted to a four-week control period, followed by a 12-week period of training for the plantar flexor muscles. Neuromuscular system properties, AT biomechanical properties and functional tests will be evaluated. Participants will be evaluated in four moments: at baseline; after 4, 8 and 12 weeks of rehabilitation. Tendon mechanical (stiffness, stress, strain), material (Young's modulus) and morphological (cross-sectional area and tendon length) properties; muscle architecture (thickness, pennation angle and fascicle length); and functional tests (heel rise resistance and height) will be analyzed between groups and periods. Effects and interactions will be analyzed with ANOVA two-way. Clinical effects will be analyzed using effect size and magnitude-based inferences.


Clinical Trial Description

Detailed Description: Early rehabilitation protocols have been studied in Achilles tendon (AT) rupture patients, but deficits in tendon biomechanical properties have been observed several years after the injury. AT rupture patients are unable to return to their previous levels of physical activity. They present deleterious adaptations in the plantar flexor muscles that lead to functional deficits and deficits in the tendon structural and mechanical properties. Deficits in calf muscle endurance and strength remained 7 years after the injury. In this regards, eccentric contractions are recommended to recover muscle morphology and mechanical properties. This contraction type produces higher force compared to isometric and concentric contractions, and increases tendon stiffness. However, there is a lack of studies showing the effect of the eccentric training in AT rupture rehabilitation. We want to know if an isokinetic eccentric training program will determine the desired adaptations on triceps surae muscle-tendon unit's properties in patients subjected to the AT surgical repair. More specifically, the aim of this study is verifying the effects of a 12-week eccentric training program on triceps surae muscle-tendon unit's properties in subjects that were subjected to the AT surgical repair. Our hypothesis is that the eccentric training program will (1) increase the ability to produce muscular strength; (2) will produce an increase in gastrocnemius and soleus muscles thickness, fascicle length, and pennation angle; (3) will increase AT stiffness and Young's modulus; (4) will increase ankle functionality; (5) will improve the patient's quality of life. Finally, we expect that the abovementioned changes from isokinetic eccentric training will be greater than those from the traditional eccentric control group that will be subjected to 12 weeks of plantar flexor training with weights. 30 subjects will be randomized in two groups: (1) isokinetic eccentric training; and (2) traditional eccentric training control group. All participants will be submitted to a four-week control period, followed by a 12- week period of training for the plantar flexor muscles. Neuromuscular system properties, AT biomechanical properties and functional tests will be evaluated. Participants will be evaluated in four moments: at baseline; after 4, 8 and 12 weeks of rehabilitation. Tendon mechanical (stiffness, stress, strain), material (Young's modulus) and morphological (cross sectional area and tendon length) properties; muscle architecture (thickness, pennation angle and fascicle length); and functional tests (heel rise resistance and height) will be analyzed between groups and periods. Effects and interactions will be analyzed with ANOVA two- way (group x period). Clinical effects will be analyzed using effect size (Cohen's d) and magnitude-based inferences. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03861572
Study type Interventional
Source Federal University of Rio Grande do Sul
Contact
Status Completed
Phase N/A
Start date February 25, 2019
Completion date August 1, 2022

See also
  Status Clinical Trial Phase
Completed NCT00537784 - Platelet Concentrate in Achilles Tendon Repair N/A
Recruiting NCT04663542 - The Efficacy of Different Immobilization Times After Achilles Tendon Rupture Surgery N/A
Withdrawn NCT04492059 - Use of Blood Flow Restriction Therapy in Perioperative Rehabilitation Following Achilles Tendon Rupture N/A
Recruiting NCT03259204 - Swedish Multicenter Trial of Outpatient Prevention of Leg Clots N/A
Completed NCT02805751 - Early Controlled Loading on Conservative Treated Achilles Tendon Ruptures N/A
Completed NCT00489749 - A Study Comparing Protected Early Weightbearing Versus Non-Weightbearing After Surgery for Achilles Tendon Rupture N/A
Active, not recruiting NCT03525964 - Individualized Treatment of Acute Achilles Tendon Rupture N/A
Completed NCT02018224 - Achilles Tendon Rupture, Comparison Two Different Operative Techniques. Prospective Randomized Controlled Trial. 14 Years Follow-up. N/A
Completed NCT04121377 - Feasibility of an Early Progressive Strength Exercise Programme for Acute Achilles Tendon Rupture N/A
Active, not recruiting NCT02318472 - Early Mobilization After Achilles Tendon Rupture N/A
Terminated NCT01237613 - Prospective Study on Artelon® Tissue Reinforcement in Repair of Chronic Ruptures and Re-ruptures of the Achilles Tendon N/A
Recruiting NCT06254794 - Effect of BFR Rehab After Achilles Tendon Rupture N/A
Recruiting NCT06009978 - Effect of Additional Treatment With NMES After Achilles Tendon Rupture N/A
Enrolling by invitation NCT05614908 - Outcome After Conservatively Treated Achilles Tendon Rupture
Completed NCT03931486 - Detection of Bacterial DNA and Collagen Metabolism in Acutely Ruptured Achilles Tendons
Recruiting NCT05683080 - Impact of Achilles Tendon Rupture on the Achilles Tendon and Calf Muscles
Recruiting NCT05717270 - Two-layer Suturing of Achilles Tendon Ruptures
Completed NCT04263493 - Delayed Loading Following Repair of a Ruptured Achilles Tendon N/A
Not yet recruiting NCT05676632 - Impact of Achilles Tendon Ruptures: Cross-Sectional Analysis
Recruiting NCT04912154 - The Efficacy of Different Rehabilitation Protocols After Achilles Tendon Rupture Surgery N/A