Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT04059471
Other study ID # OxTREC Ref: 2-19
Secondary ID SERU 3797HS 2596
Status Completed
Phase Phase 4
First received
Last updated
Start date November 11, 2019
Est. completion date June 24, 2023

Study information

Verified date February 2024
Source University of Oxford
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

In the recent past there has been a number of large urban Yellow Fever outbreaks in sub-Saharan Africa, tropical South Americas, The demand for Yellow Fever vaccines in response to the large urban outbreaks occurring concurrently and the risk of further spread through Africa and to Asia was larger than the available global supply. In this situation, the World Health Organisation (WHO) developed recommendations for the use of fractional doses of Yellow Fever vaccine as a dose-sparing strategy. These recommendations were based on data from a limited number of clinical trials, none of which had been conducted in Africa. This was due to the uncertainties on the minimum dose requirement. Our study complements a study which is comparing full standard dose to 1/5th of standard dose of all four WHO-prequalified YF vaccines in adults (ClinicalTrials.gov number: NCT02991495), and is currently ongoing at KEMRI CGMRC and Epicentre, Mbarara which is designed to answer questions on the use of current stock of YF vaccines with a potency as close as possible to each manufacturers' minimum release. Data from this trial will inform a WHO recommendation on using 1/5th of the current standard dose of vaccine for outbreak control. However, since many vials will contain excess YF vaccine such that 1/5th of a vial is likely to be substantially above the current minimum potency requirements, these data may not be scientifically explanatory regarding the minimum dose required for preventive use. The new complementary study, aims to determine the lowest YF vaccine dose that is non-inferior to the current standard full dose among populations in sub-Saharan Africa. The study will be conducted in Kenya (KEMRI Center for Geographical Medicine Research-Coast (CGMR-C), Kilifi) and Uganda (Epicentre, Mbarara) with trial participants recruited at both sites, using vaccine from one WHO-prequalified manufacturer (Institut Pasteur de Dakar, Senegal (IPD)).


Description:

Yellow fever (YF) is a disease caused by a mosquito-borne flavivirus that is endemic in sub-Saharan Africa and tropical South America. Ninety percent of YF cases are in Africa where YF virus is transmitted by different mosquito genera in three recognized transmission cycles. A sylvatic cycle involves transmission between forest-dwelling mosquitoes (Haemagogus spp) and non-human primate reservoirs, with sporadic incidental transmission to humans (e.g. forest workers). An intermediate cycle, occurring only in Africa, involves mosquito transmission between non-human primates and humans, or human-to-human transmission among humans living or working close to forested areas. An urban cycle involves transmission between humans and urban mosquito vectors, primarily Aedes aegypti, and occurs when a viraemic person, infected in the sylvatic or intermediate cycle, introduces YF virus to areas with a large non-immune population and A. aegypti vectors resulting in disease outbreaks. Infection with YF virus is characterised by a wide range of manifestations, ranging from subclinical infection with mild and non-specific symptoms, to severe, life-threatening illness with jaundice, renal failure and haemorrhage. A highly effective vaccine is available for use against YF in adults and children aged ≥9 months. The vaccine is a freeze-dried preparation of live attenuated YF virus strain 17D, which was developed in 1937 and is produced by four WHO-prequalified manufacturers. A single dose of YF vaccine is considered sufficient to confer life-long protective immunity against all seven known genotypes of wild-type YF virus. Protective levels of YF virus neutralizing antibodies are developed in 80-100% vaccine recipients within 10 days after vaccination, and in 99% within a month. Although fractional dosing has recently been used in vaccination campaigns in Kinshasa and Brazil in 2016, 2017 and 2018, WHO recommendations were based on a limited number of clinical studies and important data gaps remain. fractional vaccine dosing is compounded by the uncertainty surrounding minimum dose requirements. This study therefore aims to determine the lowest dose in International Units (IU/dose) that is non-inferior to the standard full dose among populations in sub-Saharan Africa. The data generated in this study will provide information regarding the re-definition of the minimal dose and potency requirements of the vaccine. The study will also provide further confidence in the use of fractional doses of YF vaccine during epidemics. In addition, the investigators will assess the range of views and perceptions of key stakeholders in vaccine policy and implementation on reduced vaccine dose usage during YF epidemics and for routine use. . The study will be conducted at the KEMRI CGMRC in Kilifi, Kenya and at Epicentre in Mbarara, Uganda. Both these sites are already working together in an ongoing study (ClinicalTrials.gov number: NCT02991495). Adult participants (n=480) will be randomized for vaccination with full standard dose or with 1000, 500 or 250 IU (i.e. 4 arms) with a 1:1:1:1 allocation ratio. Results for the safety and primary outcome of the adult study will then be reviewed by the DSMB, and the lowest non-inferior dose in the adult study selected for assessment in children aged 9 months to 5 years (n=420) in comparison to full standard dose (i.e. 2 arms) with a 1:1 allocation ratio. The determination of the non-inferior dose to use in children will be made by the sponsor in discussion with the study Data Safety and Monitoring Board (DSMB), vaccine manufacturer and relevant stakeholders, and the final decision communicated to the various regulatory authorities as a notification (i.e. Scientific and Ethics Review Board (SERU) at KEMRI, Oxford Tropical Research Ethics Committee (OxTREC) and Pharmacy and Poisons board (PPB) for the Kilifi site, Mbarara University of Science and Technology's Research Ethics Committee (MUST-REC), Uganda National Council of Science and Technology (UNCST) and National Drug Authority (NDA) for the Mbarara site). Adult vaccinees will be followed up for 2 years, and children for 1 year. There will be no gradual age de-escalation on the basis that there are few safety concerns with the full dose of YF vaccines, having been used in millions of children worldwide.


Recruitment information / eligibility

Status Completed
Enrollment 900
Est. completion date June 24, 2023
Est. primary completion date March 30, 2020
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 9 Months to 59 Years
Eligibility Inclusion Criteria: - Individuals aged =18 - <60 years of age. - Children aged between 9 months and 12 months. - HIV negative on serological screening OR HIV positive adults and children aged > 18 months on serological testing, and no symptoms suggestive of current clinical immunosuppression and cluster of differentiation-4 (CD4) count>200 (for adults) and CD4% > 25% (for children aged 9-12 months) within the last 6 months. - Ability to provide informed consent to participate in the study Exclusion Criteria: - Known contraindications to YF vaccination such as allergies to egg protein and chicken products or any component of the vaccine (including gelatin, eggs, eggs products or chicken products), immunodeficiency, known thymus disorder, such as thymoma and myasthenia gravis - Using corticosteroids or other immunosuppressive therapy - Thymus disorder, such as thymoma and myasthenia gravis - Acute febrile disease on the day of vaccination with temperature >37.5 degrees Celsius is a temporal contraindication. - Previous YF vaccination - Previous YF infection as determined from history - Pregnancy (as determined by a urine test on the proposed day of vaccination) and lactating women - Planning to migrate out of the study areas before the end of the study follow-up - Planning to travel to a country requiring YF vaccination certificate within the first year after vaccination. - Any condition or criteria, including acute or chronic clinically significant abnormality that in the opinion of the investigator might compromise the wellbeing of the volunteer or interfere with the outcome of the study.

Study Design


Related Conditions & MeSH terms


Intervention

Biological:
Yellow fever vaccine, Institut Pasteur
Full dose and 500IU/dose

Locations

Country Name City State
Kenya KEMRI-Wellcome Trust Research Programme Kilifi Coast
Uganda Epicentre, Mbarara. Mbarara

Sponsors (5)

Lead Sponsor Collaborator
University of Oxford Epicentre, Paris, France., Institut Pasteur, KEMRI-Wellcome Trust Collaborative Research Program, MRC/UVRI and LSHTM Uganda Research Unit

Countries where clinical trial is conducted

Kenya,  Uganda, 

Outcome

Type Measure Description Time frame Safety issue
Primary The proportion of vaccinees that seroconverts as measured by Plaque Reduction Neutralisation Test (PRNT-50) PRNT-50 will be used to quantify functional antibodies by neutralisation of the virus 28 days post vaccination
Secondary Duration of immunity as measured by PRNT To describe the longevity of functional antibodies post-vaccination with the different doses as measured by PRNT 10 days, 28 days, 1 year and 2 years (adults)
Secondary Change in the geometric mean fold of the antibody titre as measured by PRNT To describe change in the geometric mean antibodies between baseline and 28 days after vaccination. Baseline and 28 days after vaccination
Secondary Other flavivirus antibodies interference as tested by neutralisation tests To measure the impact of antibodies to other flaviviruses (including dengue, West Nile and zika viruses) on the baseline sample on YF vaccine immunogenicity 28 days after vaccination by pairwise comparison. Baseline and 28 days after vaccination
Secondary Post-vaccination viremia as measured by quantitative Polymerase Chain Reaction (PCR) To assess post-vaccination control of viremia by different vaccine doses by sparse sampling baseline, and on days 2, 3, 4, 5, 6, 7 and 10 after vaccination
Secondary Changes in cellular immunology To determine the change in T and B cell immune responses between baseline and days post-vaccination baseline and days 10 and 28 post-vaccination.
Secondary Changes in biomarkers To determine the change in serum biomarkers levels (including, TNF, INF-?, IL-2, IL-4, IL-5, IL-10, IL-8/CXCL-8, MCP-1/CCL-2, MIG/CXCL-9 and IP-10/CXCL-10) between baseline and post-vaccination by pairwise comparison. Baseline, and on days 2, 3, 4, 5, 6, 7,10 and 28 after vaccination
Secondary Safety of different doses as described by the occurrence of adverse events (AE) and serious adverse events. To assess the occurrence of adverse events (AE) over 28 days after vaccination and serious adverse events throughout the duration of the study. 28 days after vaccination and an average of 1 year for the adult study and two years for the children study. .
See also
  Status Clinical Trial Phase
Completed NCT01436396 - Study of Yellow Fever Vaccine Administered With Tetravalent Dengue Vaccine in Healthy Toddlers Phase 3
Recruiting NCT05568953 - An Experimental Medicine Decipher of a Minimum Correlate of Cellular Immunity Phase 2
Recruiting NCT05447377 - A Study of SII Yellow Fever Vaccine to Compare Safety and Immunogenicity With STAMARIL® In Healthy Infants Phase 3
Active, not recruiting NCT05011123 - Study on an Investigational Yellow Fever Vaccine Compared With Stamaril in Adults in Europe and Asia Phase 2
Completed NCT04267809 - Modulate Cellular Stress in the Immune Cells to Reduce Rate of Symptomatic Viral Infection Phase 2
Completed NCT01943305 - The Role of Pre-existing Cross-reactive Antibodies in Determining the Efficacy of Vaccination in Humans Phase 2
Completed NCT02991495 - Immunogenicity and Safety of Fractional Doses of Yellow Fever Vaccines (YEFE) Phase 4
Not yet recruiting NCT03725618 - Immunogenicity of Fractional One-fifth and One-half Doses of Yellow Fever Vaccine Compared to Full Dose in Children 9-23 Months Old Phase 4
Completed NCT01466387 - A Phase 3b, Randomized, Open-Label Study to Evaluate the Safety and Immunogenicity of Select Travel Vaccines When Administered Concomitantly With MenACWY in Adults Phase 3
Completed NCT02572518 - Immunity After Two Doses of Yellow Fever Vaccine N/A
Recruiting NCT00694655 - Human Immune Responses to Yellow Fever Vaccination Phase 4
Not yet recruiting NCT05332197 - Booster Vaccine for Yellow Fever Phase 3
Recruiting NCT05421611 - A Study of SII Yellow Fever Vaccine to Compare Safety and Immunogenicity With STAMARIL Phase 3
Completed NCT03116802 - Yellow Fever Vaccine on Statin/ Non Statin Subjects Phase 2
Completed NCT02743455 - A Trial to Evaluate the Safety, Reactogenicity, and Immunogenicity of MVA-BN Yellow Fever Vaccine With and Without Montanide ISA-720 Adjuvant in 18-45 Year Old Healthy Volunteers Phase 1
Completed NCT01426243 - The Yellow Fever Vaccine Immunity in HIV Infected Patients : Development of New Assays for Virological and Immunological Monitoring in HIV Infected Patient. Phase 3
Completed NCT00982137 - Study of Live Attenuated Japanese Encephalitis Vaccine (ChimeriVax™-JE) and Yellow Fever Vaccine (STAMARIL®) Phase 2
Active, not recruiting NCT04269265 - The Effect of Inflammation and Damage to Lymph Node Structures on Durable Protective Immunity Following Yellow Fever Vaccination Phase 1/Phase 2
Completed NCT03870061 - Evaluation of an Infant Immunization Encouragement Program in Nigeria N/A
Completed NCT00995865 - Trial of Yellow Fever Inactivated Vaccine Phase 1