Clinical Trials Logo

Clinical Trial Summary

Diseases along the nonalcoholic fatty liver disease spectrum, which are tightly coupled to the obesity epidemic, are soon to become the commonest indication for liver transplantation in the United States. Bariatric surgery shows great promise in the treatment of these diseases. The studies proposed herein will be the first to measure in humans the relationships among (i) the liver's ability to burn fat and make glucose, two of its primary functions; (ii) the severity of nonalcoholic fatty liver disease; and (iii) the responses to bariatric surgery. These experiments will support deeper future mechanistic investigations of the metabolic mechanisms underlying nonalcoholic steatohepatitis (NASH) improvement with bariatric surgery. The premise of this study is that deranged hepatic mitochondrial metabolism is a key biomarker and mediator of the nonalcoholic fatty liver disease (NAFLD)/NASH continuum, and the central hypothesis the investigators will test is that preoperative hepatic fat oxidation and glucose production flux parameters differ between low versus high NAFLD activity score (NAS), and response of the liver to bariatric surgery can be predicted by preoperative fluxes.


Clinical Trial Description

Twenty-five percent of the United States population has nonalcoholic fatty liver disease (NAFLD), a disease that includes hepatic fatty infiltration alone (simple steatosis) or steatosis plus inflammation, liver cell injury and death (nonalcoholic steatohepatitis [NASH]). NAFLD involving hepatic steatosis alone can be a stable clinical condition existing as the hepatic manifestation of insulin resistance. NASH develops in 25% of patients with NAFLD, and likely has additional pathologic underpinnings compared to steatosis alone. NASH leads to liver fibrosis, an elevated risk of cirrhosis and hepatocellular carcinoma and is likely to be the leading cause of liver transplantation in the U.S. The gold standard to distinguish probable uncomplicated NAFLD from NASH can be made using the histopathological nonalcoholic fatty liver disease score (NAS) score in which the sum of the categorical severity of steatosis, inflammation, and hepatocyte ballooning injury is ≥ 4, i.e., suggestive of NASH. Patients with obesity (BMI³30 kg/m2), type 2 diabetes (T2DM), age older than 45 years, and certain ethnicities are at high risk for developing NASH. In the U.S., the cost of management of NASH and its complications is $32 billion annually. Durable therapies are lacking for the NASH spectrum and an acceptable pharmaceutical intervention is not approved. Weight loss, achieved through lifestyle modification, is the cornerstone of therapy. Improvements in NAS are proportional to weight loss but weight loss does not reliably surpass 10% with lifestyle modification. Weight loss surgery (bariatric surgery) achieves dramatic weight loss. The vertical sleeve gastrectomy (VSG), a bariatric surgical procedure, can dramatically reduce (NAS) and favor NASH remission. Importantly, not all patients with NASH demonstrate histologic improvements following bariatric surgery, and in a small percentage of patients the disease may progress. Presently, it is not known what mechanistic biomarkers might prioritize steatosis, inflammation, or hepatocyte ballooning injury, and furthermore there are no known antecedent biomarkers of outcome of NAFLD with bariatric surgery. As the primary host for glucose and fat metabolism, the liver forms the critical nexus for whole body metabolism. In the setting of insulin resistance and NAFLD, glucose production becomes less responsive to the suppressive effects of insulin while de novo fat synthesis is enhanced in a paradoxical setting in which fat oxidation is not decreased. Mitochondrial b-oxidation of fatty acids normally produces acetyl-CoA which is terminally oxidized via the tricarboxylic acid (TCA) cycle, producing reducing equivalents needed for gluconeogenesis. While measured in uncomplicated human NAFLD, hepatic energy fluxes have never been formally measured in human NASH, and thus there is an unmet need to determine whether mitochondrial metabolism drives and/or predicts NAFLD progression/resolution, potentially yielding quantifiable predictive value over NAS alone. The research group has developed magnetic resonance spectroscopy (MRS)- based methods for quantifying hepatic oxidative energy fluxes and glucose metabolism ('hepatic energy fluxes') using administered dual 2H and 13C isotope tracers non-invasively and without imaging, requiring only collections of peripheral venous blood. These flux measurements will be performed at baseline in obese patients (BMI of 30-39.9 kg/m2) prior to VSG, who have all received preoperative liver biopsies for histopathological determination of NAS score, liver MRI-derived proton density fat fraction (PDFF) and elastography (MRE) assessment of fibrosis, and intravenous glucose tolerance tests (IVGTT) as a crude measure of insulin resistance. Then it will be determined how preoperative energy flux indices correlate with pre- and post-operative NAS, PDFF, and MRE indices. Thus, the premise of this study is that deranged hepatic mitochondrial metabolism is a key biomarker and mediator of the NAFLD/NASH continuum, and the central hypothesis the investigators will test is that preoperative hepatic fat oxidation and glucose production flux parameters differ between low versus high NAS, and response of the liver to bariatric surgery can be predicted by preoperative fluxes. It is anticipated that these preliminary observations will serve as proof-of-concept datasets supporting future R01 funding that comprehensively determine the role of hepatic oxidative fluxes in human NASH evolution and response to bariatric surgery. This will be first study to quantify hepatic metabolic fluxes in obese (BMI 30-39.9 kg/m2) adult patients with biopsy-proven NASH compared to NAFLD without NASH. This will also be the first study to correlate these findings to histopathological, radiographic, and clinical outcomes following VSG. Central parameters of hepatic energy fluxes, and the relative contributions of the liver's three carbon sources to endogenous glucose production (i.e., from PEP, glycogen, or glycerol), have not been quantified for in human NASH. Contributions of these metabolic indices preoperatively to VSG outcomes have not been interrogated. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03997422
Study type Interventional
Source University of Minnesota
Contact Mary Farnsworth
Phone 612-624-9695
Email ewigx005@umn.edu
Status Recruiting
Phase N/A
Start date July 1, 2019
Completion date July 1, 2024

See also
  Status Clinical Trial Phase
Completed NCT04506996 - Monday-Focused Tailored Rapid Interactive Mobile Messaging for Weight Management 2 N/A
Active, not recruiting NCT04420936 - Pragmatic Research in Healthcare Settings to Improve Diabetes and Obesity Prevention and Care for Our Program N/A
Terminated NCT03316105 - Effect of T6 Dermatome Electrical Stimulation on Gastroduodenal Motility in Healthy Volunteers N/A
Completed NCT03700736 - The Healthy Moms Study: Comparison of a Post-Partum Weight Loss Intervention Delivered Via Facebook or In-Person Groups N/A
Active, not recruiting NCT04353726 - Knowledge-based Dietary Weight Management. N/A
Completed NCT02948283 - Metformin Hydrochloride and Ritonavir in Treating Patients With Relapsed or Refractory Multiple Myeloma or Chronic Lymphocytic Leukemia Phase 1
Completed NCT03377244 - Healthy Body Healthy Souls in the Marshallese Population N/A
Completed NCT02877004 - LLLT for Reducing Waste Circumference and Weight N/A
Active, not recruiting NCT04327141 - Low Sugar Protein Pacing, Intermittent Fasting Diet in Men and Women N/A
Completed NCT03929198 - Translation of Pritikin Program to the Community N/A
Recruiting NCT05249465 - Spark: Finding the Optimal Tracking Strategy for Weight Loss in a Digital Health Intervention N/A
Recruiting NCT05942326 - Sleep Goal-focused Online Access to Lifestyle Support N/A
Completed NCT00535600 - Effects of Bariatric Surgery on Insulin
Not yet recruiting NCT03601273 - Bariatric Embolization Trial for the Obese Nonsurgical Phase 1
Active, not recruiting NCT04357119 - Common Limb Length in One-anastomosis Gastric Bypass N/A
Completed NCT03210207 - Gastric Plication in Mexican Patients N/A
Completed NCT02945410 - Effect of Caloric Restriction and Protein Intake on Metabolism and Anabolic Sensitivity N/A
Completed NCT02948517 - Time Restricted Feeding for Weight Loss and Cardio-protection N/A
Completed NCT03139760 - POWERSforID: A Telehealth Weight Management System for Adults With Intellectual Disability N/A
Recruiting NCT02559479 - A Study to Assess the Effect of a Normal vs. High Protein Diets in Carbohydrates Metabolism in Obese Subjects With Diabetes or Prediabetes N/A