Clinical Trials Logo

Clinical Trial Summary

Lung-protective ventilation (LPV) during general anesthesia can trigger the development of early postoperative pulmonary complication (PPC) and ventilator associated lung injury. One of the proven components of the LPV is low tidal volume (TV). Data on the positive end-expiratory pressure (PEEP) parameters adjustment in laparoscopic surgery, as well as the effects on the respiratory biomechanics, lung tissue and respiratory muscles damage are limited and not clear. The objective of the study is to evaluate the ability of the esophageal pressure (Pes) based controlled personalized PEEP adjustment, to improve the biomechanics of the respiratory system and oxygenation due to laparoscopic cholecystectomy.


Clinical Trial Description

During laparoscopic surgery pressure on alveoli increases, due to in the conditions of pneumoperitoneum, muscle relaxation, the patient's position on the operating table, excess body weight and other factors. As the consequence, the alveoli collapse due to negative transpulmonary pressure. The personalized PEEP adjustment for each particular patient during laparoscopic surgery can help to avoid the adverse effects on biomechanical parameters of the respiratory system, the early PPC incidence and improve overall patients' recovery. The objective of the study is to evaluate the ability of the esophageal pressure (Pes) based controlled personalized PEEP adjustment, to improve the biomechanics of the respiratory system and oxygenation due to laparoscopic cholecystectomy. Investigators will measure if PEEP adjustment according to the pressure indicators in the lower third of the esophagus Pes (intervention group) versus PEEP constantly set at 5 cmH2O (control group) gives better outcomes and prevent the early PPC incidence in hospitals. After the induction, intubation and insertion of the esophageal balloon catheter, TV for patients both groups is set to 6 ml / kg BMI: for men (50+0.91* (height-152.4), for women (45+0.91* (height-152.4); minute ventilation (MV) to ensure the level of PetCO2 - 30-35 mmHg, respiratory rate (RR) 15-25/min (maximum up to 35/min). Gas exchange parameters including partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2) in arterial blood will be measured before the induction (T0), after 1 hour after surgery (T5) and after 24 hours after surgery (T6), then will calculate PAO2/FiO2 respectively. FiO2, oxygen saturation (SpO2), hemodynamic parameters including blood pressure (BP), heart rate (HR) will be recorded in all point of the study. Following respiratory mechanics will be measured: plateau pressure (Pplat), PEEP, driving pressure (DP), Pes during inspiration and expiration, volumetric capnometry (VCO2), end-tidal carbon dioxide tension (PetCO2). Respiratory system compliance (Cstat, Cl, Ccw), end-expiratory lung volume (EELV) will calculated after intubation (T1), after PEEP set according to the patient's group allocation PEEP Pes and PEEP 5 (T2), after initiating pneumoperitoneum (T3) and placing the patient in the reverse Trendelenburg position (T4). This is a randomized controlled study in the operating room of the University hospitals. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05222893
Study type Interventional
Source Karaganda Medical University
Contact
Status Completed
Phase N/A
Start date April 14, 2021
Completion date March 26, 2024

See also
  Status Clinical Trial Phase
Not yet recruiting NCT06296173 - Open Lung Protective Extubation Following General Anesthesia N/A
Not yet recruiting NCT03245684 - Assisted or Controlled Ventilation in Ards (Ascovent) N/A
Completed NCT03401463 - Assesment of the Endotracheal Tube Cuff Pressure Values in ICU Pateints Before and After Training Seminar N/A
Completed NCT02386683 - Intraoperative Lung-Protective Ventilation in Neurosurgery N/A
Completed NCT03651817 - Lung Protection Strategy in Open Heart Surgery: Which Tidal Volume is Better 8ml/kg or 6ml/kg N/A
Recruiting NCT03709199 - Long Term Follow up of Children Enrolled in the REDvent Study
Recruiting NCT03367221 - Physiological Response in Lung Transplant Recipients Undergoing Neurally Adjusted Ventilatory Assist N/A
Completed NCT03056885 - Inflammatory Local Response During OLV: Protective vs Conventional Ventilation Strategy N/A
Recruiting NCT03746236 - Transpulmonary Pressure Under Stressing Conditions
Not yet recruiting NCT06334523 - Ventilation of the Extremely Premature Infants Optimized by Dead Space Washout N/A
Recruiting NCT03719365 - Driving Pressure Variation: NAVA vs PSV N/A
Completed NCT03659552 - Percutaneous Temporary Placement of a Transvenous Phrenic Nerve Stimulator for Diaphragm Pacing Using Jugular Access N/A
Completed NCT02732041 - Asynchrony During Mechanical Ventilation in Patients With Acute Respiratory Distress Syndrome
Terminated NCT03525691 - Enhanced Lung Protective Ventilation With ECCO2R During ARDS N/A
Not yet recruiting NCT05859906 - The Effect of Two Different Intra-abdominal Pressure Applications on "Mechanical Power" in Laparoscopic Cholecystectomy
Recruiting NCT05977153 - CT for Personalized Mechanical Ventilation N/A
Active, not recruiting NCT06430606 - Novel Oxygenation Indices in Robot-Assisted Laparoscopic Surgeries
Recruiting NCT04484727 - "Lung Barometric Measurements in Normal And in Respiratory Distressed Lungs"
Recruiting NCT05991258 - Effect of End-inspiratory Airway Pressure Measurements on the Risk of VILI in Ventilated Patients
Terminated NCT03951064 - Providing Optimal PEEP During Mechanical Ventilation for Obese Patients Using Esophageal Balloon N/A