Clinical Trials Logo

Upper Extremity Paresis clinical trials

View clinical trials related to Upper Extremity Paresis.

Filter by:
  • Completed  
  • Page 1 ·  Next »

NCT ID: NCT06352762 Completed - Clinical trials for Upper Extremity Paresis

The Effects of Upper Extremity Robotic Rehabilitation in Children With Spastic Hemiparetic Cerebral Palsy

Start date: February 15, 2017
Phase: N/A
Study type: Interventional

Aims: To investigate the effects of upper extremity robotic rehabilitation on upper extremity skills and functional independence level in patients with hemiparetic Cerebral Palsy (hCP). Methods: 34 hCP patients attended the study. 17 children in the training group recived conventional physiotherapy and Robotic Rehabilitation. 17 children in the control group recived only conventional physiotherapy. Convantional physiotherapy program lasted 45 minutes, Robotic Rehabilitation program lasted 30 minutes. All participants were enrolled in sessions 3 times a week for 5 weeks. Measurements were made before and after the therapy. Outcome measures were Modified Ashworth Scale (MAS) for muscle tone, Abilhand-Kids Test for manual skills, The Quality of Upper Extremity Skills Test (QUEST) for upper extremity motor function and The WeeFIM for functional independence level.

NCT ID: NCT06143475 Completed - Stroke Clinical Trials

Functional Proprioceptive Stimulation of the Upper Limbs in Stroke Patients

Start date: February 20, 2021
Phase: N/A
Study type: Interventional

Parallel-group, single-blinded controlled clinical trial. The study involved stroke patients (no more than 3 points on a scale Rankin) dived of the control group and experimental group. Control group received daily sessions of conventional physical therapy. In addition to the same conventional physical therapy treatment, the participants of the experimental group underwent repetitive upper limb Functional Proprioceptive Stimulations (FPS) sessions.

NCT ID: NCT06108440 Completed - Stroke Clinical Trials

Comparative Effects of Action Observation and Motor Imagery on Upper Limb in Chronic Stroke Patients

Start date: August 3, 2023
Phase: N/A
Study type: Interventional

To Compare effects of action observation and motor imagery training on upper limb function in chronic stroke patients.

NCT ID: NCT05311384 Completed - Stroke Clinical Trials

Application of a Reimbursable Form of Constraint-Induced Movement Therapy for Upper Extremity

Start date: April 20, 2022
Phase: N/A
Study type: Interventional

CI therapy is a family of techniques that has systematically applied intensive treatment daily over consecutive days, supervised motor training using a technique called shaping, behavioral strategies to improve the use of the more- affected limb in real life situations called a Transfer Package (TP), and strategies to remind participants to use the more-affected extremity; including restraint of the less-affected arm in the upper extremity (UE) protocol. Numerous studies examining use of CI therapy with UE rehabilitation have demonstrated robust evidence for increasing the amount and the quality of the paretic UE functional use in daily situations of individuals recovering from stroke. Previous studies have explored the barriers for clinical implementation of the approach, including the amount of time needed by therapists, other resources required and lack of payment for the services. With regards to therapists' time/resources, in the signature CI therapy protocol, therapists supervised movement training for 3 hours daily (except for weekends) for a 12 consecutive-day period. This level of supervision in highly unusual for traditional rehabilitation clinical settings. The treatment schedule is also incompatible with most insurance reimbursement policies in the US. As such, most CI therapy clinics require patients to pay privately with little or no insurance reimbursement. Such practices severely limit the number of patients who can afford to receive CI therapy. Two lines of evidence have suggested that an alternative CI therapy protocol may allow for the essential (or "Key") CI therapy elements to be delivered in a schedule that better utilizes therapist time/resources and is compatible with payment policies of many US insurance companies. One line of evidence comes from findings that indicate that the original 6-hour supervised training schedule could be shortened to as little as 2-hours/daily without a reduction in outcomes. Additional evidence comes from a study exploring the systematic addition and deletion of the signature CI therapy protocol elements indicated that when the transfer package was omitted, outcomes related to functional use were reduced by 50%. These findings were also verified by brain imaging studies conducted concurrently that revealed a much-reduced level of brain remodeling in those not receiving the transfer package. These findings highlight the potential effectiveness of the transfer package and continued movement training by the patient while away from clinical supervision. The hypothesis of this study is that the amount of supervised training could be reduced further and delivered in a distributed schedule (1 to 4 times/ week over an 8-week period) instead of consecutively over a 12-day treatment period. This modification could be possible by adapting and strengthening the transfer package component of the protocol. In order to investigate if all of the Keys intervention protocol is necessary for producing optimal outcomes, the delivery of specific protocol elements will be also explored. Additionally, another round of testing at the 4-week point of the 8-week intervention will be administered to investigate the need for the final 4 weeks of the intervention.

NCT ID: NCT05128370 Completed - Stroke Clinical Trials

Visual Observation Scale for the Upper Limb During Walking in Patients After Stroke.

Start date: December 1, 2021
Phase:
Study type: Observational

For several years now, it has been demonstrated that the upper limb plays an important role in the function of an efficient and balanced gait pattern in healthy adults. After a stroke, the reduced muscle strength has a clear influence on the gait pattern, but also on the active movement possibilities of the upper limb. However, the role of the upper limb during gait is not sufficiently explored in the literature. The gold standard for motion analysis is a 3D analysis performed with infrared cameras capturing reflective markers during gait. Unfortunately, it is not possible for all people after a stroke to undergo this examination. On the one hand, patients must already have a certain degree of independence with regard to gait. On the other hand, not all centers have access to this expensive accommodation. There are some validated observation scales for people after stroke to describe the gait based on a 2D video image. This method is much more accessible and can be applied by any therapist. However, to date there has been little attention paid to the upper limb in these observation scales. Therefore, analogous to the observation scales for gait, an observation scale for the upper limb during gait was set up. The use of this scale can add value to the rehabilitation of people after a stroke. - The treatment team will receive information about the patient's complete movement pattern. - The arm will be more prominent when setting rehabilitation goals related to gait. This can lead to a positive effect on the gait pattern itself, but also to more attention being paid to the arm, which has a more difficult recovery than the leg after a stroke. The aim of the current study will be - to determine the inter and intra tester reliability of this visual observation scale - to investigate if the results of the visual observation scale correlate to a 3D assessment performed in a subgroup of participants

NCT ID: NCT05106595 Completed - Stroke, Acute Clinical Trials

Bimanual Arm Training in Acute Stroke

Start date: May 10, 2022
Phase:
Study type: Observational [Patient Registry]

Recent studies have shown that completing bilateral simultaneous movements during upper extremity practice may result in facilitation of coactivation and interhemispheric activation of both the ipsilesional and contralesional brain areas, with one limb entraining the other and enabling the limbs to function as a unit. Other research has proposed that the use of virtual-reality (VR) activities during treatment sessions can improve upper extremity function following stroke as it is motivating, challenging, offers external feedback that may facilitate motor learning, and allows for the "high-intensity, repetitious practice necessary to drive recovery". Coupling bilateral simultaneous upper extremity movement and virtual-reality activities is the Bimanual Arm Trainer (BAT), a non-powered mechanical device by which the non-paretic upper extremity moves the paretic arm. The purpose of this study is to determine the effectiveness of the Bimanual Arm Trainer (BAT) compared to traditional occupational therapy treatment sessions as these relate to upper extremity functional return following stroke, as measured by scores on the Action Research Arm Test (ARAT) and Upper Extremity Fugl-Meyer Assessment (UE-FMA) measures. The investigators plan to use retrospective data for a pre-implementation group, comparing this data to prospectively collected post-implementation data. ARAT scores are routinely collected and will be used for comparison between groups. UE-FMA measures are commonly used in this area of research, and will be taken to provide additional context for the post-implementation group.

NCT ID: NCT04927728 Completed - Stroke Clinical Trials

The Application of a Mental Practice Protocol in the Acute Inpatient Rehabilitation Setting

Start date: January 28, 2019
Phase: N/A
Study type: Interventional

The purpose of this randomized controlled trial is to compare the effect of audio-guided mental practice (MP) and video-guided MP on the impairment and functional abilities of upper extremity (UE) hemiparesis following a stroke. Participants are recruited from Adventist Healthcare Rehabilitation Hospital. All participants must be less than one-month post-stroke with moderate UE hemiparesis. Eligible participants are randomly assigned to an experimental group, (MP or repetitive-task practice (RTP)), or the control group. The MP groups will perform either audio-guided MP or video-guided MP, five days a week, with 20 repetitions of the following tasks: wiping a table, picking up a cup, brushing hair, and turning the pages of a book. The RTP group physically performed the same tasks. The control group received traditional stroke rehabilitation. The investigators hypothesize that video MP will have greater improvements in UE impairments and functional abilities than audio MP, RTP, and/or traditional therapy.

NCT ID: NCT04554238 Completed - Cerebral Palsy Clinical Trials

Effectiveness of Armeo Spring Robotic Therapy in the Function of the Upper Limb of Children With Unilateral Spastic Cerebral Palsy Infiltrated With Botulinum Toxin

Start date: November 1, 2018
Phase: N/A
Study type: Interventional

Background: Unilateral spastic cerebral palsy (CP) generates an impact on daily activities, mainly due to the functional limitation of the affected upper limb. The use of technologies such as Armeo spring robotic therapy seeks to improve upper limb mobility through innovative and motivating training that facilitates movement. Objective: To assess the effectiveness of Armeo spring robotic therapy versus conventional occupational therapy regarding the changes in upper limb functionality of children with unilateral spastic CP infiltrated simultaneously with botulinum toxin A (BTA). Patients and methods: Randomized clinical trial of parallel groups, in children between 4 and 10 years of age diagnosed with unilateral spastic CP and infiltrates with BTA, who received treatment of conventional occupational therapy (group I) or Armeo spring robotic therapy (group II). The intervention consists of 15 sessions of 40 minutes for 5 weeks, 3 times a week. An initial evaluation is applied with QUEST, ABILHAND-Kids, and MACS, which are re-evaluated at 3 and 6 months. Hypothesis: Armeo spring robotic therapy will obtain better results than conventional occupational therapy in relation to the functionality of the upper limb at the level of manipulative function, quality of movement of the limb and the performance of daily activities. Expected results: The results of the QUEST and ABILHAND-Kids dimensions assessed before, after and at follow-up will be the primary outcome. The presence of adverse effects will correspond to secondary outcome. Benefit and limitations: Direct social contribution for patient's rehabilitation by using technology and a contribution to research to update scientific evidence. Possible limitations could be presence of adverse effects and poor adherence to treatment.

NCT ID: NCT04529343 Completed - Cerebral Palsy Clinical Trials

Virtual Reality Mediated Upper Extremity rehabilitationPatients With Cerebral Palsy

Start date: August 20, 2020
Phase: N/A
Study type: Interventional

Cerebral palsy (CP) refers to a group of permanent disorders that occur in the brain of the fetus or infant, which are non-progressive, cause movement and posture disorder along with activity limitation. The upper extremity is frequently affected in patients with CP. The prevalence of upper extremity involvement has been reported between 60-83% in different studies. Virtual reality applications have been increasing recently in the field of neurological rehabilitation. In this study, researchers aimed to investigate the effectiveness of virtual reality-mediated upper extremity rehabilitation in patients with hemiplegic cerebral palsy.

NCT ID: NCT04308629 Completed - Stroke Clinical Trials

Cortical Enhancement of Posture, Movement Planning, and Execution of Upright Reaching Following Stroke

Start date: October 1, 2016
Phase: N/A
Study type: Interventional

Stroke is the leading cause of disability and diminished quality of living that frequently includes impairments of postural control and upper extremity (UE) function. The interaction of posture and UE coupling in terms of movement planning, initiation, and execution is not well understood. StartReact responses triggered by a loud acoustic stimulus (LAS) during the planning and preparation of goal intended actions has been used to probe the state of brainstem neuronal excitability related to posture and movement sequencing. The purpose of this study is to examine posture and goal-directed movement planning and execution using startReact responses and to evaluate posture and UE movement sequence during reaching while standing in individuals with chronic hemiparesis and healthy controls. Secondly, the investigators will determine the modulatory role of the cortical premotor areas (PMAs) in startReact responses in healthy controls and in persons with stroke by using transcranial direct current stimulation (tDCS) to up- or down-regulate PMAs excitability.