Clinical Trials Logo

Clinical Trial Summary

Left ventricular hypertrophy (LVH) is common in people with type 2 diabetes (70%) and is the strongest independent risk factor for cardiovascular events and all-cause mortality that there is. It is worse than triple vessel coronary disease. LVH often occurs in patients with "normal" blood pressures (BP). Apart from BP, the other three main factors causing LVH are insulin resistance, obesity and cardiac preload. Dapagliflozin reduces ALL four factors known to promote LVH i.e. Dapagliflozin reduces weight, glycaemia, preload and blood pressure and is therefore the ideal agent to reduce LVH since it uniquely attacks all four known mediators of LVH. This trial will investigate the ability of dapagliflozin to regress LVH in 64 participants with normotensive diabetes. This will be done by seeing if dapagliflozin reduces left ventricular mass as measured by cardiac magnetic resonance imaging (MRI). This trial may identify a novel way to reduce the strong independent risk factor of LVH which often persists despite optimum medical therapy in patients with diabetes. If dapagliflozin does reduce LVH, this would be a key sign of which subgroup of patients with diabetes (those with LVH) should be especially targeted with dapagliflozin.

64 participants with type 2 diabetes and LVH will be recruited through the Scottish Diabetes Research Network (SDRN), Scottish Primary Care Research Network (SPCRN) and other routes, in this single centre study. Participants will be randomised to receive either 10mg dapagliflozin or placebo daily for 12 months. Cardiac MRI will be performed at baseline and at 12 months, this will be assessed for the primary outcome of change in left ventricular mass. Secondary outcomes will examine change in 24 hour blood pressure and weight.


Clinical Trial Description

Left ventricular hypertrophy (LVH) is present in the majority of patients with type 2 diabetes, since it affects 70%. It is a strong independent predictor of cardiovascular deaths and events and is even worse than triple vessel coronary disease. The reason why LVH is so adverse is because it predates so many different cardiovascular events i.e. LVH is intrinsically arrhythmogenic and causes sudden death, it impedes left ventricular (LV) filling and leads to diastolic heart failure, it reduces coronary perfusion reserve and causes ischaemia and it causes left atrial enlargement, atrial fibrillation (AF), and cardio-embolic strokes. Controlling blood pressure (BP) and using a drug that blocks the renin-angiotensin system (RAS) are the standard approaches to the management of LVH but this approach is only partially effective since 44% of all patients with type 2 diabetes are normotensive patients with LVH. Thus "normotensive LVH" is very common. Indeed, BP only contributes 25% to the variability in LV mass seen in a population. (This is important since LVH is the same thing as a high level of LV mass). Despite a "normal" BP, normotensive LVH is just as risky as is hypertensive LVH. Nevertheless, we do know that regressing LVH irrespective of BP changes is an effective way to reduce the incidence of all major cardiovascular (CV) events including specifically sudden deaths, heart failure hospitalisations, new onset AF and strokes. The Losartan Intervention For Endpoint reduction in hypertension study (LIFE) provides conclusive proof that in diabetes, LVH regression per se reduces future cardiovascular events (by 24%), reduces CV deaths (by 37%) and reduces total deaths (by 41%) irrespective of BP.

Since controlling BP and using an angiotensin enzyme inhibitor or angiotensin receptor blocker is only partially effective at regressing LVH, additional ways of regressing LVH are now required. Insulin resistance is another mediator of LVH. The literature is awash with observational studies linking insulin resistance to LVH. Pub Med identifies 67 such papers, 5 of which are inconclusive. In the remaining 62 papers, 46 identify a significant relationship between LVH and some measure of insulin resistance while 16 found no such relationship. The large studies are mostly positive which includes Framingham, the Whitehall trial, the Strong Heart trial and the Women's Health Initiative trial while the Hypertension Genetic Epidemiology Network (HyperGEN) trial is the one large negative trial. There are a multitude of mechanisms whereby hyperinsulinaemia should produce LVH e.g. through signalling pathways such as Akt, transforming growth factor and peroxisome proliferator-activated receptors, through increased myocardial free fatty acid oxidation and through RAS activation causing sodium retention and thus increased cardiac preload. Therefore, it is likely that glycaemia contributes to LVH. However, reducing glycaemia per se appears to be insufficient to reduce CV events and key ancillary properties of each anti-glycaemic drug will be necessary to deliver the CV benefits we so badly need in diabetes.

A separate albeit related factor mediating LVH is obesity. Importantly, dapagliflozin has been shown to reduce weight. Thus the ideal treatment to regress LVH might be one that not only improves glycaemia but one that also aids weight loss. Dapagliflozin is the obvious option here since it has been shown to reduce both glycaemia and weight. Metformin is the only other anti-glycaemic which reduces both glycaemia and weight. Indeed the reason metformin reduces CV events in diabetes while other anti-glycaemic agents do not could well be in part because metformin reduces both glycaemia and weight which then reduce LVH (in fact we already have a separate British Heart Foundation grant to see if metformin really does reduce LV mass).

However dapagliflozin has other unique effects on the CV system which will impact on LVH. Dapagliflozin reduces blood pressure (LV afterload) and this by itself should also further reduce LVH. Further reducing BP even in normotensive patients has been shown to definitely regress LVH. Dapagliflozin also has diuretic effects which should reduce preload on the heart (this will be measured preload in this trial by MRI assessed end diastolic volume). The fact that dapagliflozin reduces both preload and afterload on the heart makes it uniquely promising as a way to reducing future CV events in patients with diabetes and, here, in reducing LV hypertrophy. Thus, dapagliflozin should regress LVH in patients with diabetes because it is unique in reducing the four main causes of LVH: glycaemia/insulin resistance, weight, preload and blood pressure. No other anti-diabetic medication alters even three of these. Even metformin only alters two since it does not change blood pressure. All other diabetic medications only reduce one (glycaemia) of these mediators of LVH. This may be why other new anti-glycaemic agents have failed to reduce CV events. In this trial, it is proposed to trial whether dapagliflozin causes regression of the independent cardiac risk factor of LVH in diabetic participants on optimal current evidence based therapy.

Original Hypothesis

Dapagliflozin will regress LVH in normotensive participants with type 2 diabetes.

RATIONALE FOR TRIAL

Cardiac MRI will be used to assess whether Dapagliflozin regresses LV mass more than placebo does over a one year treatment period. If it does, this would strongly suggest that Dapagliflozin will reduce CV events especially in the 44% of patients with type 2 diabetes who have LVH despite a controlled blood pressure.

All studies examining LVH regression require to be parallel group studies as effects on LV mass take 6-12 months to occur. Hence this is a parallel group, one year trial of the active drug vs. placebo.

The issue of what dapagliflozin does to CV events in diabetes is a hot topic. Most new antidiabetic drugs have been neutral or harmful but, judging by its pharmacological effects, it is quite possible that dapagliflozin might reduce CV events. A large ongoing trial (Dapagliflozin Effect on CardiovascuLAR Events - Thrombolysis in Myocardial Infarction (DECLARE - TIMI)) is just beginning to look at this. Why therefore do we also need to trial the effects of dapagliflozin on LV mass in those with LVH? If DECLARE-TIMI shows clearly that dapagliflozin reduces CV events, then our trial will have revealed a possible contributing mechanism to the reduced CV events i.e. LVH regression (patients in DECLARE-TIMI will not receive echocardiography so that subgroup analysis will not be able to answer this question and electrocardiograms are useless at identifying LVH. Furthermore, the accuracy of MRI over echo is so great that echo studies of LVH regression should no longer be considered reliable).

In other words, large mega-trials like DECLARE-TIMI are very valuable, but parallel smaller mechanistic studies like this can enhance their value by helping to explain the mechanisms producing the mega-trial results and/or helping to identify a subgroup who get a particular benefit meaning that the drug becomes more cost effective in that subgroup. Overall, this trial might, in conjunction with a mega-trial, help decide the course of future research (should LVH be a favoured target?) and help decide how to apply the results of a mega-trial in clinical practice. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02956811
Study type Interventional
Source University of Dundee
Contact
Status Completed
Phase Phase 4
Start date February 14, 2017
Completion date April 2, 2019

See also
  Status Clinical Trial Phase
Completed NCT05219994 - Targeting the Carotid Bodies to Reduce Disease Risk Along the Diabetes Continuum N/A
Completed NCT04056208 - Pistachios Blood Sugar Control, Heart and Gut Health Phase 2
Completed NCT02284893 - Study to Evaluate the Efficacy and Safety of Saxagliptin Co-administered With Dapagliflozin in Combination With Metformin Compared to Sitagliptin in Combination With Metformin in Adult Patients With Type 2 Diabetes Who Have Inadequate Glycemic Control on Metformin Therapy Alone Phase 3
Completed NCT04274660 - Evaluation of Diabetes and WELLbeing Programme N/A
Active, not recruiting NCT05887817 - Effects of Finerenone on Vascular Stiffness and Cardiorenal Biomarkers in T2D and CKD (FIVE-STAR) Phase 4
Active, not recruiting NCT05566847 - Overcoming Therapeutic Inertia Among Adults Recently Diagnosed With Type 2 Diabetes N/A
Recruiting NCT06007404 - Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
Completed NCT04965506 - A Study of IBI362 in Chinese Patients With Type 2 Diabetes Phase 2
Recruiting NCT06115265 - Ketogenic Diet and Diabetes Demonstration Project N/A
Active, not recruiting NCT03982381 - SGLT2 Inhibitor or Metformin as Standard Treatment of Early Stage Type 2 Diabetes Phase 4
Completed NCT04971317 - The Influence of Simple, Low-Cost Chemistry Intervention Videos: A Randomized Trial of Children's Preferences for Sugar-Sweetened Beverages N/A
Completed NCT04496154 - Omega-3 to Reduce Diabetes Risk in Subjects With High Number of Particles That Carry "Bad Cholesterol" in the Blood N/A
Completed NCT04023539 - Effect of Cinnamomum Zeylanicum on Glycemic Levels of Adult Patients With Type 2 Diabetes N/A
Recruiting NCT05572814 - Transform: Teaching, Technology, and Teams N/A
Enrolling by invitation NCT05530356 - Renal Hemodynamics, Energetics and Insulin Resistance: A Follow-up Study
Completed NCT03960424 - Diabetes Management Program for Hispanic/Latino N/A
Completed NCT04097600 - A Research Study Comparing Active Drug in the Blood in Healthy Participants Following Dosing of the Current and a New Formulation (D) Semaglutide Tablets Phase 1
Completed NCT05378282 - Identification of Diabetic Nephropathy Biomarkers Through Transcriptomics
Active, not recruiting NCT06010004 - A Long-term Safety Study of Orforglipron (LY3502970) in Participants With Type 2 Diabetes Phase 3
Completed NCT03653091 - Safety & Effectiveness of Duodenal Mucosal Resurfacing (DMR) Using the Revita™ System in Treatment of Type 2 Diabetes N/A