Clinical Trials Logo

Clinical Trial Summary

Sarcoidosis is a systemic inflammatory disease characterized by unspecific granuloma formation. Our hypothesis is that granuloma formation and maintenance mainly relies on the overactivation of monocytes (Mo) and macrophages (Ma). To this end, the study aims (i) to define MoMa systemic signature in sarcoidosis, (ii) to characterize this signature in situ on tissue samples, and (iii) to identify causative factors that participate to the MoMa chronic overactivation. Thus, a cohort of sarcoidosis patients will be compared with tuberculosis patients. The MoMa systemic signature will be defined on whole blood (TruCulture model) and then in situ through different methods (multi-parameter spectral flow cytometry, RNA-seq, Luminex, imaging mass cytometry). The epigenome of monocytes will be studied thanks to CUT&Tag. The MoMa systemic signature will be defined ex vivo at different time points during the course of the disease with phenotypic, transcriptomic, cytokine and functional approaches. The previously identified signature will be studied in situ and completed by the characterization of granuloma architecture and microenvironmental interactions, which could be modulated by epigenetic modifications. Hence, the epigenome of monocytes will be analyzed in two groups (sarcoidosis and tuberculosis). These results would allow to better understand sarcoidosis physiopathology and, in fine, may raise new therapeutic strategies. Finally, the study could challenge the dogma on innate immunity/auto-inflammation versus adaptive immunity/auto-immunity/memory.


Clinical Trial Description

"Sarcoidosis is an inflammatory disease characterized by the presence of coalescing, tightly clustered, non-necrotizing granulomas. The diagnosis is based on three major criteria: a compatible clinical presentation, the presence of non-necrotizing granulomatous inflammation, and the exclusion of alternative granulomatous diseases. A wide range of clinical phenotypes are observed depending on the location of the granulomatous lesions which can affect any organ, with the lungs being the most affected site. Sarcoidosis shares many similarities with tuberculosis, in which granuloma formation is triggered by Mycobacterium tuberculosis (M. tb). These phenotypic similarities between the two diseases present many challenges for diagnosis, clinical management and therapy. Our understanding of the factors that contribute to sarcoidosis development, granuloma formation and maintenance remains limited. Part of this challenge is that granuloma development may involve both environmental and genetic factors, which contribute to the recruitment of immune cells to form the granuloma. Immune cells involved in the granuloma include (1) CD4 Th1 and Th17 T cells and their associated cytokines (e.g, IFNγ, TNFα, IL-17, IL-2); and (2) monocytes (Mo) and macrophages (Ma) including proinflammatory M1 and pro-fibrosis M2 types. However, the specific factors that contribute to granuloma maintenance and evolution remain to be identified. Among them, we can hypothesized that trained immunity, persistence of the antigen, or the microenvironment are involved in this chronic dysregulated immune response. Such an improved understanding of the pathophysiology of the disease may allow development of new treatments, as currently corticosteroids remain the mainstay of therapy. Our main hypothesis is that granuloma formation and maintenance mainly relies on the overactivation of monocytes (Mo) and macrophages (Ma). To this end, the study aims (i) to define MoMa systemic signature in sarcoidosis, (ii) to characterize this signature in situ on tissue samples, and (iii) to identify causative factors that participate to the MoMa chronic overactivation. Thus, a cohort of sarcoidosis patients will be compared with tuberculosis patients. The MoMa systemic signature will be defined on whole blood (TruCulture model) and then in situ through different methods (multi-parameter spectral flow cytometry, RNA-seq, Luminex, imaging mass cytometry). The epigenome of monocytes will be studied thanks to CUT&Tag. The MoMa systemic signature will be defined ex vivo at different time points (M0, M6 and M12) during the course of the disease with phenotypic, transcriptomic, cytokine and functional approaches. The previously identified signature will be studied in situ and completed by the characterization of granuloma architecture and microenvironmental interactions, which could be modulated by epigenetic modifications. Hence, the epigenome of monocytes will be analyzed in two groups (sarcoidosis and tuberculosis). These results would allow to better understand sarcoidosis physiopathology and, in fine, may raise new therapeutic strategies. Finally, the study could challenge the dogma on innate immunity/auto-inflammation versus adaptive immunity/auto-immunity/memory." ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05916638
Study type Observational
Source Assistance Publique - Hôpitaux de Paris
Contact Karim Sacre, MD-PhD, PU-PH
Phone 0140256019
Email karim.sacre@aphp.fr
Status Recruiting
Phase
Start date January 15, 2024
Completion date October 2025

See also
  Status Clinical Trial Phase
Recruiting NCT05738681 - Efficacy of N-acetylcysteine to Prevent Anti-tuberculosis Drug-induced Liver Injury: A Randomized Controlled Trial Phase 2/Phase 3
Recruiting NCT05526885 - Tuberculosis Diagnostic Trial of CAD4TB Screening Alone Compared to CAD4TB Screening Combined With a CRP Triage Test, Both Followed by Confirmatory Xpert MTB/RIF Ultra in Communities of Lesotho and South Africa N/A
Completed NCT04369326 - Community Initiated Preventive Therapy for TB N/A
Recruiting NCT04568967 - TB-CAPT EXULTANT - HIV N/A
Completed NCT02337270 - Phase 1 Clinical Trial of the Safety and Immunogenicity of an Adenovirus-based TB Vaccine Administered by Aerosol Phase 1
Not yet recruiting NCT06253715 - Shortened Regimen for Drug-susceptible TB in Children Phase 3
Recruiting NCT04271397 - Immunological Biomarkers in Tuberculosis Management N/A
Withdrawn NCT03639038 - Tuberculosis Diagnosis by Flow Cytometry
Completed NCT03199313 - Study to Evaluate the Safety, Tolerability, and Pharmacokinetics of Sutezolid Phase 1
Recruiting NCT04975178 - Efficacy, Safety and Immunogenicity Evaluation of MTBVAC in Newborns in Sub-Saharan Africa Phase 3
Completed NCT04463680 - Rifampin and the Contraceptive Implant Phase 4
Completed NCT03973970 - Assessing the Ability of the T-SPOT®.TB Test (IQ)
Recruiting NCT04230395 - Alcohol Reduction Among People With TB and HIV in India N/A
Completed NCT04874948 - Absorption, Elimination and Safety of 14C-labeled Radioactive BTZ-043, a New Compound in TB Treatment Phase 1
Active, not recruiting NCT02906007 - Evaluating the Pharmacokinetics, Safety, and Tolerability of Bedaquiline in Infants, Children, and Adolescents With Multidrug-Resistant Tuberculosis, Living With or Without HIV Phase 1/Phase 2
Not yet recruiting NCT05917210 - Peer-led Implementation of TB-HIV Education and Adherence Counseling in Uganda N/A
Not yet recruiting NCT06017843 - Impact Evaluation of Use of MATCH AI Predictive Modelling for Identification of Hotspots for TB Active Case Finding N/A
Not yet recruiting NCT05845112 - Start Taking Action For TB Diagnosis
Active, not recruiting NCT02715271 - Study of TB Lesions Obtained in Therapeutical Surgery
Completed NCT02781909 - Potential Efficacy and Safety of Using Adjunctive Ibuprofen for XDR-TB Tuberculosis Phase 2