Clinical Trials Logo

Clinical Trial Summary

Tubercular meningitis occurs in around 10% of those with extrapulmonary tuberculosis and is a major cause of mortality and morbidity. Inspite of effective Anti-tubercular drugs, still around 30% of patients develop complications due to arachnoiditis such as spinal tubercular radiculomyelitis, optico-chiasmatic arachnoiditis, development of new tuberculomas after starting therapy etc. which are probably immune mediated inflammatory responses due to paradoxical reaction to ATT. The management of arachnoiditis is far from satisfactory. High dose methylprednisolone, intrathecal hyaluronic acid, thalidomide have been tried in small case series and case reports. However, the results have not been satisfactory. There are two published reports of cyclophosphamide usage in TBM related vasculitis and stroke The investigators tried cyclophosphamide in four patients after consent, and found remarkable improvement in all of them. (Under peer review) In order to test this hypothesis, a randomized controlled trial is needed.


Clinical Trial Description

Tubercular arachnoiditis occurring as a late complication of TBM is due to immune mediated reactions and is usually treated with high doses of corticosteroids. In the investigators' experience patients have received corticosteroids upto a duration of 20-28 months. In such cases, if the patient is refractory to corticosteroids, it is logical to step up to cyclophosphamide rather than continuing to give high dose steroids only similar to other immune mediated conditions such as CIDP, systemic and CNS vasulitis, Lupus nephritis etc. Cyclophosphamide has been used most widely in the management of Lupus nephritis and maximum experience with the drug has been in this indication. So the dosage and duration of administration has been adapted from the induction phase dosing schedule of the ACR guidelines for the management of Lupus nephritis. The guidelines recommend 500 to 1000 mg/m2 BSA of cyclophosphamide. So the investigators decided to use 750 mg/m2 of the drug rounded off to the higher 50 mg. Pathogenesis of tubercular arachnoiditis and Possible mechanism of cyclophosphamide Tubercular arachnoidiitis is a delayed complication in most cases due to inflammation in the optochiasmatic, spinal and other cranial nerves leading to neurologic deficits. In such situations, it is seen that there is an initial improvement in clinical symptoms followed by deterioration due to enlargement of lesions or appearance of new lesions, especially in patients with extrapulmonary tuberculosis. These new lesions are probably due to immune mediated mechanisms-it has been seen that in more than 95% of cases are drug sensitive and corticosteroids are the cornerstone of management of such patients. The complete pathogenesis of immune medicated tissue injury in tuberculosis has not been elucidated. Various studies have shown that there is an excess of pro-inflammatory cytokines and chemokines including TNF-alpha and interleukins that lead to recruitment of inflammatory cells and an exhuberant immune response in patients who develop these complications as compared to those who don't. There have been studies which have shown genetic polymorphisms in the genes encoding pro-inflammatory and anti-inflammatory cytokines-leading to difference in response to corticosteroids like LTA4 (Leukotriene- A4 hydrolase) gene. It is also well known that various immune mediated diseses such as SLE, multiple sclerosis etc are triggered by viruses and other infections. It is routine practice to treat acute bacterial meninigitis and tubercular meningitis with dexamethasone, which is again a steroid and immunosuppressant along with specific antibiotics or anti-tubercular therapy respectively based on evidence from systematic reviews and meta-analysis. Neurocysticercosis is treated with corticosteroids and other immunosuppressant medications such as methotrexate as recommended in guidelines, adalimumab and eternacept used as steroid sparing agents. Various other immune mediated complications of acute and chronic infections such as dengue myocarditis, ADEM etc are also treated with immunosuppression including corticosteroids. Lepra reactions in Leprosy are also treated using steroids, thalidomide, methotrexate, azathioprine, cyclophosphamide, cyclosporine etc. In recent times, the corticosteroid- Dexamethasone has been shown to have mortality benefit in patients with moderate to severe COVID, proven in a randomized controlled trial. Simliarly, even though there are no RCT data, Tocilizumab, siltuximab and other immunosuppressant medications have been approved for emergency use based on their efficacy shown in large case series in COVID-19. Justification for the use of cyclophosphamide this study: Cyclophosphamide is a potent immunosuppressant agent. It is used in Lupus and other immune mediated conditions and has been shown to be effective in randomized controlled trials in Lupus nephritis, granulomatous polyangiiitis etc. Though it is widely used off label in various inflammatory immune mediated neurologic conditions such as CNS vasculitis, CIDP, multiple sclerosis, autoimmune encephalitis, refractory myasthenia gravis etc, the evidence for this is basically derived from the rheumatology and nephrology literature. It has to be emphasized that all the data for immunosuppression with azathioprine, cyclophosphamide, mycophenolate mofetil, methotrexate, calcineurin inhibitors in various immune mediated conditions have been derived from renal transplant/solid organ transplant cohorts, lupus nephritis cohorts, systemic vasculitis cohorts and inflammatory bowel disease cohorts. The various guidelines issued by the professional bodies for these conditions form the principles of treatment of rare conditions such as neuroimmunologic diseases. The major adverse effects of concern in patients on Cyclophosphamide is the occurrence of life threatening infections such as tuberculosis. It has been seen that patients on high dose corticosteroids and cyclophosphamide are at higher risk of infection than those on steroids alone or on neither drug.Though the risk of TB increases with administration of immunosuppressants, the mainstay of management is early diagnosis and starting appropriate therapy and not cessation of immunosuppression. In the context of SLE the occurrence of infection is also dependent on various other factors such as disease activity, previous exposure to tuberculosis etc. The Americal college of rheumatology guidelines do not say anything on the course of action in case patients develop infections. There are no professional guidelines for the management of infections in patients on cyclophosphamide. There are no RCTs on the most appropriate form of ATT regimens or the modification of immunosuppression in these conditions. There are various case series and case reports who have been systematically studied infections and their management including the large prospective EuroLupus cohort. None of these authors advice complete cessation of immunosuppression in patients who develop infections including tuberculosis. The guidelines for management of tuberculosis such as British thoracic society guidelines for the management of TB in CKD,do not suggest cessation of immunosuppression in post renal transplant patients. The guidelines clearly mention that TB in patients with CKD have to be treated in same lines of immunocompetent patients, and the anti-tubercular drugs may need to be given in renal modified doses. In case of tuberculosis risk, it has been shown by various long term follow up studies that a considerable proportion of patients with latent TB infections progress to develop active TB post transplantation or after treatment with immunosuppressants or biologic agents such as anti TNF therapy. In such circumstances, the guidelines suggest not dropping immunosuppression, but treatment of latent TB or active TB. The guidelines for the management of active TB in solid organ transplantation suggests early diagnosis and treatment of tuberculosis along with increasing the dose of immunosuppressants such as corticosteroids, cyclosporine or tacrolimus as the ATT regimen containing rifamycins tend to induce the metabolism of these immunosuppression and trough levels of calcineurin inhibitors have to be maintained by increasing the dose of cyclosporine or tacrolimus by upto 4-5 times. These recommendations are mainly based on a large multicentre cohort of more than 2000 patients derived from 187 publications who had received solid organ transplantation and developed tuberculosis, where the dose of immunosuppressant drugs had been increased to maintain adequate blood levels to avoid rejection of the organ graft. Similar recommendations have been made by the TBNET consensus statement for management of Tuberculosis in transplant recipients. The management of immunosuppression in these cases are mainly based on expert consensus in other conditions such as rheumatoid arthritis, spondyloarthropathy etc. The TBNET consensus statement also says that in case the organ is not vital or the infection is life threatening, it may be considered to reduce the level of immunosuppression. The guidelines for the use of anti TNF-α therapy is clearer in this aspect. While the occurrence of active TB during anti TNF-α therapy warrants withholding (NOT cessation) of immunosuppression, it may be re started 2 months after ATT the if patients demonstrate a favorable response to anti-TB therapy and require early resumption of anti TNF therapy.The BTS guidelines suggest that if active TB was diagnosed prior to starting of "Anti-TNF-α therapy, treatment should not be commenced for at least 2 months after antituberculosis treatment with full compliance has begun, supervised by a thoracic physician orinfectious disease specialist, and until the drug susceptibility profile of the organism in those with positive cultures is known, as a minimum." However, if the patient develops TB while on anti TNF therapy the anti-TNF-α treatment can be continued if clinically indicated because the patient would otherwise be prevented from receiving the continued clinical benefit to their underlying disease and may have a flare up or major clinical deterioration. The rationale provided by these guidelines is that HIV positive individuals with reduced CD4 counts and clinical TB, who are even more immunosuppressed than those on anti-TNF-a treatment, respond just as well to TB treatment as those who are HIV negative. Taking that logic forward, it may be reasonable to start therapy with cyclophosphamide three months after starting standard Anti tubercular therapy in patients with tubercular meningitis who have shown clearcut improvement followed by deterioration due to development of arachnoiditis and paradoxical immune responses. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04620772
Study type Interventional
Source All India Institute of Medical Sciences, New Delhi
Contact Arunmozhimaran Elavarasi, MD DM
Phone +919013844274
Email arun_ela@yahoo.com
Status Not yet recruiting
Phase Phase 2/Phase 3
Start date January 1, 2021
Completion date December 31, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT05738681 - Efficacy of N-acetylcysteine to Prevent Anti-tuberculosis Drug-induced Liver Injury: A Randomized Controlled Trial Phase 2/Phase 3
Recruiting NCT05526885 - Tuberculosis Diagnostic Trial of CAD4TB Screening Alone Compared to CAD4TB Screening Combined With a CRP Triage Test, Both Followed by Confirmatory Xpert MTB/RIF Ultra in Communities of Lesotho and South Africa N/A
Completed NCT04369326 - Community Initiated Preventive Therapy for TB N/A
Recruiting NCT04568967 - TB-CAPT EXULTANT - HIV N/A
Completed NCT02337270 - Phase 1 Clinical Trial of the Safety and Immunogenicity of an Adenovirus-based TB Vaccine Administered by Aerosol Phase 1
Not yet recruiting NCT06253715 - Shortened Regimen for Drug-susceptible TB in Children Phase 3
Recruiting NCT04271397 - Immunological Biomarkers in Tuberculosis Management N/A
Withdrawn NCT03639038 - Tuberculosis Diagnosis by Flow Cytometry
Completed NCT03199313 - Study to Evaluate the Safety, Tolerability, and Pharmacokinetics of Sutezolid Phase 1
Recruiting NCT04975178 - Efficacy, Safety and Immunogenicity Evaluation of MTBVAC in Newborns in Sub-Saharan Africa Phase 3
Completed NCT04463680 - Rifampin and the Contraceptive Implant Phase 4
Completed NCT03973970 - Assessing the Ability of the T-SPOT®.TB Test (IQ)
Recruiting NCT04230395 - Alcohol Reduction Among People With TB and HIV in India N/A
Completed NCT04874948 - Absorption, Elimination and Safety of 14C-labeled Radioactive BTZ-043, a New Compound in TB Treatment Phase 1
Active, not recruiting NCT02906007 - Evaluating the Pharmacokinetics, Safety, and Tolerability of Bedaquiline in Infants, Children, and Adolescents With Multidrug-Resistant Tuberculosis, Living With or Without HIV Phase 1/Phase 2
Not yet recruiting NCT05917210 - Peer-led Implementation of TB-HIV Education and Adherence Counseling in Uganda N/A
Not yet recruiting NCT05845112 - Start Taking Action For TB Diagnosis
Not yet recruiting NCT06017843 - Impact Evaluation of Use of MATCH AI Predictive Modelling for Identification of Hotspots for TB Active Case Finding N/A
Active, not recruiting NCT02715271 - Study of TB Lesions Obtained in Therapeutical Surgery
Completed NCT02781909 - Potential Efficacy and Safety of Using Adjunctive Ibuprofen for XDR-TB Tuberculosis Phase 2