Clinical Trials Logo

Clinical Trial Summary

Traumatic brain injury (TBI) continues to be a major cause of death and disability throughout the world. The reduced cerebral blood flow secondary to the direct trauma-induced damage deregulates cerebral metabolism and depletes energy stores within the brain. Diffusion barriers to the cellular delivery of oxygen develop and persist. Besides, TBI often leads to intracranial hypertension, which in turn exacerbates diffusion disorders, further reducing cerebral oxygenation, and deteriorates the injury. By increasing the partial pressure of oxygen in blood, reducing intracranial pressure and cerebral edema, Hyperbaric oxygen therapy (HBO2) has been used in early treatment of TBI. However, due to the different severity of TBI, the clinical situation of early insult is complex and unpredictable, ordinarily there was a time delay between TBI and onset of HBO2 treatment averaging more than 2 weeks, especially in patients with severe TBI. Whether the delayed intervention is still effective is controversial.


Clinical Trial Description

Traumatic brain injury (TBI) continues to be a major cause of death and disability throughout the world. The pathophysiological processes which occur post-TBI are complex and have not been fully elucidated. Penetrating injury, mechanical stress, cceleration-deceleration injury, and shear forces provide the direct trauma-induced damage. Subsequently, the reduced cerebral blood flow deregulates cerebral metabolism and depletes energy stores within the brain. Diffusion barriers to the cellular delivery of oxygen develop and persist. Besides, TBI often leads to intracranial hypertension, which in turn exacerbates diffusion disorders, further reducing cerebral oxygenation, and deteriorates the injury. Ischemia has been implicated as a major cause of secondary brain injury and death following severe brain injury. Hyperbaric oxygen therapy (HBO2) has been used in early treatment of TBI. Studies have shown that increased tissue oxygen delivery is capable of driving an increase in oxygen utilization, leading to improved cerebral aerobic metabolism. By increasing the partial pressure of oxygen in blood, HBO2 increases cerebral oxygen saturation. In addition, HBO2 has been shown in both experimental and clinical studies to reduce intracranial pressure and cerebral edema after severe TBI. HBO2 has been shown to decrease mortality rates and improve functional outcome in severely brain-injured patients. However, due to the different severity of TBI, the clinical situation of early insult is complex and diverse, and a considerable number of patients in the acute stage was accompanied by unstable intracranial hemorrhage, hemodynamic instability, ventilator assisted ventilation and other unpredictable conditions, therefore, ordinarily there was a time delay between TBI and onset of HBO2 treatment averaging more than 2 weeks, especially in patients with severe TBI. Whether the delayed intervention is still effective is controversial. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05387018
Study type Observational
Source Second Affiliated Hospital, School of Medicine, Zhejiang University
Contact Zhihua Zhang, master
Phone +86 13757159433
Email 2511097@zju.edu.cn
Status Recruiting
Phase
Start date March 31, 2022
Completion date December 31, 2025

See also
  Status Clinical Trial Phase
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Completed NCT04356963 - Adjunct VR Pain Management in Acute Brain Injury N/A
Completed NCT03418129 - Neuromodulatory Treatments for Pain Management in TBI N/A
Terminated NCT03698747 - Myelin Imaging in Concussed High School Football Players
Recruiting NCT05130658 - Study to Improve Ambulation in Individuals With TBI Using Virtual Reality -Based Treadmill Training N/A
Recruiting NCT04560946 - Personalized, Augmented Cognitive Training (PACT) for Service Members and Veterans With a History of TBI N/A
Completed NCT05160194 - Gaining Real-Life Skills Over the Web N/A
Recruiting NCT02059941 - Managing Severe Traumatic Brain Injury (TBI) Without Intracranial Pressure Monitoring (ICP) Monitoring Guidelines N/A
Recruiting NCT03940443 - Differences in Mortality and Morbidity in Patients Suffering a Time-critical Condition Between GEMS and HEMS
Recruiting NCT03937947 - Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
Completed NCT04465019 - Exoskeleton Rehabilitation on TBI
Recruiting NCT04530955 - Transitioning to a Valve-Gated Intrathecal Drug Delivery System (IDDS) N/A
Recruiting NCT03899532 - Remote Ischemic Conditioning in Traumatic Brain Injury N/A
Suspended NCT04244058 - Changes in Glutamatergic Neurotransmission of Severe TBI Patients Early Phase 1
Completed NCT03307070 - Adapted Cognitive Behavioral Treatment for Depression in Patients With Moderate to Severe Traumatic Brain Injury N/A
Recruiting NCT04274777 - The Relationship Between Lipid Peroxidation Products From Traumatic Brain Injury and Secondary Coagulation Disorders
Withdrawn NCT05062148 - Fundamental and Applied Concussion Recovery Modality Research and Development: Applications for the Enhanced Recovery N/A
Withdrawn NCT04199130 - Cognitive Rehabilitation and Brain Activity of Attention-Control Impairment in TBI N/A
Withdrawn NCT03626727 - Evaluation of the Efficacy of Sodium Oxybate (Xyrem®) in Treatment of Post-traumatic Narcolepsy and Post-traumatic Hypersomnia Early Phase 1