Clinical Trials Logo

Traumatic Brain Injury clinical trials

View clinical trials related to Traumatic Brain Injury.

Filter by:

NCT ID: NCT06071949 Recruiting - Stroke Clinical Trials

Efficacy and Tolerability of AP707 in Patients With Chronic Pain Due to Central Neuropathy of Any Genesis

Start date: November 2, 2023
Phase: Phase 3
Study type: Interventional

Over the last years a rising medical need for treatment of chronic pain was identified. Based on previous findings indicating the pain modulating effects of cannabinoids in chronic pain disorders, this clinical trial investigates the efficacy and tolerability of the THC-focused nano endocannabinoid system modulator AP707 in patients with chronic pain disorders due to central neuropathy of any genesis. Patients receive AP707 or placebo over the course of 14 weeks as an add-on to the standard of care. Changes in pain intensity, quality of life and sleep and others measures are monitored through different scales to assess the efficacy of AP707 in patients with chronic pain due to central neuropathy of any genesis.

NCT ID: NCT06069999 Recruiting - Clinical trials for Traumatic Brain Injury

Telerehabilitation Early After CNS Injury

Start date: May 2024
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to assess the safety and feasibility of providing extra doses of rehabilitation therapy for persons with a recent stroke, traumatic brain injury (TBI) and/or spinal cord injury (SCI). The therapy treatment targets to improve arm function by introducing telerehabilitation to the bedside of participants during the inpatient rehab admission period. Participants will use a newly developed functional training system (HandyMotion) to access therapy treatment program directly from their hospital room. HandyMotion is a sensor-based training system that can connect to the TV set in the hospital room, enabling patients to access their therapy training program to practice rehab-oriented games and exercises ad libitum, at any time of the day.

NCT ID: NCT06067750 Recruiting - Clinical trials for Traumatic Brain Injury

Comparison of Narcotrend and Cerebral Function Analysing Monitor in Intensive Care to Monitor Seizures and Deep Sedation

Start date: June 27, 2023
Phase:
Study type: Observational

A study in the use of the Narcotrend depth of anaesthesia monitor to record a) seizures, and b) monitor a level of sedation referred to as 'burst suppression', in sedated patients in the adult and paediatric intensive care. Studies have shown that patients in coma on the intensive care unit may have subclinical in addition to clinical seizures. Subclinical seizures are seizures that do not show any outward signs and may go undetected. The current gold standard of recording seizures in the intensive care unit is by non-invasive, continuous monitoring of the electrical activity of the brain by electroencephalography (cEEG) using cerebral function analysing monitor (CFAM). This is recorded with simultaneous video recording and is performed by Clinical Neurophysiology departments. There has been a steady increase in demand for this service over recent years. Additionally, CFAM / cEEG is labour intensive and expensive. If trends continue, the proportion of hospitals offering CFAM / cEEG will continue to rise, creating increased demand for specialist staff, of which there are a finite number. Depth of anaesthesia monitors are used by anaesthetists to assess the level of anaesthesia in sedated patients using specialised, automated EEG analysis and are now recommended by NICE (DG6) to tailor anaesthetic dose to individual patients. This study aims to investigate the utility of the Narcotrend depth of anaesthesia monitor to monitor for seizures and burst suppression on the adult and paediatric intensive care unit. These monitors are cheaper and more widely available with the scope to be used at every bed space requiring neuro observation on the intensive care unit. The study aims to recruit all patients who are referred for CFAM / cEEG monitoring at Nottingham University Hospitals (NUH) Trust over a 12 month period. These patients will undergo simultaneous recording using CFAM / cEEG and depth of anaesthesia monitoring.

NCT ID: NCT06062628 Recruiting - Clinical trials for Traumatic Brain Injury

Ketamine in Severe Traumatic Brain Injury

Start date: March 18, 2024
Phase: Early Phase 1
Study type: Interventional

Traumatic brain injury (TBI) accounts for approximately 2.5 million visits to emergency departments in the United States each year. After decades of research, management strategies for severe TBI (sTBI) patients are still evolving. Optimizing intracranial pressure (ICP) and cerebral perfusion pressure (CPP) are paramount in the management of these patients and placement of these monitors is the current standard-of-care. However, monitoring brain oxygenation (PbtO2) with invasive intraparenchymal monitors is currently under investigation in the management of severe TBI and placement of these monitors is gaining widespread use. This has opened the door for the use of tiered therapy to optimize ICP and PbtO2 simultaneously. Current evidence indicates that correction of ICP, CPP and PbtO2 in sTBI requires optimized analgesia and sedation. Ketamine is one of the few drugs available that has both sedative and analgesic properties and does not commonly compromise respiratory drive like opioids and sedative-hypnotics. However, traditionally, ketamine has been viewed as contraindicated in the setting of TBI due to concerns for elevation in ICP. Yet, new data has cast this long-held assumption into significant doubt. Hence the present pilot study will characterize the neurophysiological response to a single dose of ketamine in critically-ill TBI patient with ICP and PbtO2 monitoring.

NCT ID: NCT06052787 Recruiting - Clinical trials for Traumatic Brain Injury

Combined Cerebrolysin and Amantadine Sulfate Administration for Patients With Traumatic Brain Injury in the ICU

Start date: September 1, 2023
Phase: Phase 3
Study type: Interventional

The goal of this interventional study is to Measure the potential benefits of combined administration of cerebrolysin and amantadine sulfate as an add-on therapy to the standard management of patients admitted to the ICU with traumatic brain injury.

NCT ID: NCT06034509 Recruiting - Clinical trials for Traumatic Brain Injury

Cognitive and Vascular Functioning Following TBI

Start date: November 27, 2023
Phase:
Study type: Observational

This observational study will examine the association of chronic traumatic cerebrovascular injury and cardiovascular risk factors with TBI-related cognitive impairment and vascular dementia. Cerebrovascular, inflammatory, and neurodegenerative blood biomarkers as well as clinical and neuroimaging data

NCT ID: NCT06028334 Recruiting - Clinical trials for Traumatic Brain Injury

GetUp&Go: A Randomized Controlled Trial of an Intervention to Enhance Physical Activity After TBI

Start date: December 19, 2023
Phase: N/A
Study type: Interventional

The goal of this clinical trial is to evaluate GetUp&Go, a program for promoting increased physical activity in individuals at least 6 months post moderate-to-severe traumatic brain injury. GetUp&Go is a remotely delivered 10-week program that includes one-on-one sessions with a therapist and a mobile health application (RehaBot). The main question is whether participants in the 10-week GetUp&Go program increase their physical activity, and exhibit associated benefits in mental and physical health, relative to those who are put on a waitlist. - Question 1: Do participants who receive immediate treatment with GetUp&Go show more increased physical activity, measured by accelerometer activity counts per day, and improve more on secondary outcomes, such as self-reported physical activity, emotional function, fatigue, sleep, pain, and health-related quality of life, compared to their baseline, relative to those who are put on a waitlist? - Question 2: Do participants who have continued access to the mobile health component of the intervention, RehaBot, show better maintenance of physical activity gains compared to those who no longer have access to RehaBot? - Question 3: Are individual participant characteristics associated with participants' response to the treatment program?

NCT ID: NCT05976087 Recruiting - Stroke Clinical Trials

Improving Grasp Function in People With Sensorimotor Impairments by Combining Electrical Stimulation With a Robotic Hand Orthosis

SENSIBLE-EXO
Start date: July 1, 2023
Phase: N/A
Study type: Interventional

Hand motor and sensory impairments resulting from neurological disorders or injuries affect more than 50 million individuals worldwide. Conditions such as stroke, spinal cord injury (SCI), and traumatic brain injury (TBI) can cause long-term hand impairments, greatly impacting daily activities and social integration. Since traditional physiotherapy has limited effectiveness in rehabilitation, assistive devices helping in performing in daily activities have emerged as a necessary solution. Soft exoskeletons offer advantages as they are more comfortable and adaptable for the user, but they often struggle to generate sufficient force. On the other hand, electrical stimulation garments, like e-sleeves, show promise by stimulating nerves and muscles in the forearm. However, achieving precise and stable movement control remains challenging due to difficulties in electrode placement for targeted stimulation. Furthermore, none of the currently available devices are capable of artificially restoring lost sensation in users' hands, limiting their ability to manipulate with fragile objects. Recognizing these limitations, our study proposes a solution that combines a standard hand soft exoskeleton with: (i) electrical stimulation to the fingers' flexor and extensor muscles to generate artificial muscle contractions synchronized with the exoskeleton motion, compensating for the lack of gripping force, and (ii) electrical stimulation to the nerves to artificially restore the lost sensation of touch, enabling users to receive feedback on the force they are applying when interacting with the environment. The investigators refer to this proposed combination as Sensible-Exo. To achieve this goal, our project aims to evaluate the functional improvements in assistive and rehabilitative scenarios using SensoExo in comparison to use only the exoskeleton or having no support at all. The exoskeleton will be coupled with an electrical stimulating sleeve capable of delivering non-invasive electrical stimulation in the form of Functional Electrical Stimulation (FES) and Transcutaneous Electrical Nerve Stimulation (TENS). A glove with embedded force and bending sensors will be used to modulate the electrical stimulation. Additionally, apart from studying the enhancement of functional tasks, the investigators will explore improvements in body perception, representation, and multi-sensory integration. Indeed, the investigators also aim at identifying the way patients perceive their body by means of ad-hoc virtual reality assessments that has been developed. Before each assessment patient will perform some predefined movement in virtual reality to familiarize with it and increase embodiment. During the study, participants will perform a range of tasks based on their residual abilities, including motor tasks (e.g., grab and release, Toronto Rehabilitation Institute Hand Function Test, grip force regulation test, virtual egg test), cognitive tasks (dual tasks), and assessments of body representation and perception. Some of these tasks will be conducted in Virtual Reality environments, both with and without active stimulation.

NCT ID: NCT05951777 Recruiting - Clinical trials for Traumatic Brain Injury

Autologous Adipose Derived Mesenchymal Stem Cells for Chronic Traumatic Brain Injury

Start date: April 2024
Phase: Phase 2
Study type: Interventional

The global objective of this study is to establish the safety and investigate the potential treatment effect of an intravenous infusion of HB-adMSCs (Hope Biosciences adipose-derived mesenchymal stem cells) on brain structure, neurocognitive/functional outcomes, and neuroinflammation after traumatic brain injury and/or hypoxic-ischemic encephalopathy in adults.

NCT ID: NCT05934773 Recruiting - Stroke Clinical Trials

Post-Brain Injury Walking and Balance Recovery Program

Start date: August 18, 2022
Phase: N/A
Study type: Interventional

The purpose of this study is to test the efficacy of a walking and balance training program designed to safely challenge and improve walking performance and balance in relation to walking speed, strength, endurance, and balance after traumatic brain injury (TBI). The aim and primary hypothesis of this research project is: Aim) Test and implement a new personalized intervention strategy, in addition to usual and customary care at an inpatient rehabilitation clinic, to improve patient outcomes with secondary conditions associated with impaired balance and walking that typically occur post brain injury. After validation of the locomotor Battery of tests, we will implement a personalized training strategy for individuals based on their battery profile. Hypothesis) Individuals training with this individualized protocol will demonstrate improved walking and balance outcomes and those with lesser pre-intervention impairment will improve at a greater rate than those with greater pre-intervention impairment.