Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT00588432
Other study ID # 2391-02
Secondary ID 5R01EB000812
Status Completed
Phase N/A
First received December 26, 2007
Last updated December 3, 2009
Start date April 2003
Est. completion date September 2009

Study information

Verified date December 2009
Source Mayo Clinic
Contact n/a
Is FDA regulated No
Health authority United States: Food and Drug Administration
Study type Observational

Clinical Trial Summary

The goal of this proposal is two-fold: (1) to further develop and validate a technology, magnetic resonance elastography (MRE), for quantitatively imaging mechanical properties and tension distribution in muscle and (2) to apply the technique for in vivo evaluation of patients with four common, and clinically significant muscle disorders (spasticity, disuse atrophy, myofascial pain and a metabolic myopathy). These studies will employ a magnetic resonance imaging sequence with synchronous motion-sensitizing gradients to map propagating shear waves in the muscle. The technique will assess the mechanical properties of the muscle and its tension distribution. Specifically, the study can be divided into three specific aims. Aim 1: Optimize MRE methods of acquisition and analysis for the assessment of muscle, including electromechanical drivers, data acquisition techniques, and methods for image analysis. Advanced techniques for very rapid MRE assessment of muscle will continue to be developed. Aim 2: Validate the MRE assessment of muscle properties and tension with phantom, ex-vivo muscle, and Finite Element Modeling (FEM) techniques. Finite Element Analysis will be performed by using both phantom and bovine muscles to better correlate MRE wave-length findings as function of muscle properties, tension and fiber architecture. Aim 3: Study In Vivo Normal and Abnormal Muscle. The MRE technique will be applied in vivo to provide elastographic images of abnormal muscle with known disorders. The patient groups chosen for study are each important in their own right, and furnish unique information across the spectrum of muscular disease and dysfunction. Groups to be studied include individuals with new onset of spasticity following an ischemic, hemispheric stroke, disuse atrophy as a result of immobilization, metabolic (hyperthyroid) myopathy and myofascial pain for trigger point identification. The overall hypothesis of this work is that will bring benefits to both basic research and clinical care.


Recruitment information / eligibility

Status Completed
Enrollment 300
Est. completion date September 2009
Est. primary completion date September 2009
Accepts healthy volunteers Accepts Healthy Volunteers
Gender Both
Age group 18 Years to 65 Years
Eligibility Inclusion Criteria:

Normals:

- Healthy individuals

Stroke:

- a first stroke (i.e., a unilateral, ischemic hemispheric stroke) within the previous one to two months, ability to cooperate and follow simple commands, and gastrocsoleous strength in the affected lower extremity of between trace and 50% of normal.

Immobilization:

- immobilized in a cast (typically 6 weeks) following sugical repair of a severe Achilles tendon tear or rupture, ankle injury or plantar fascial pain

Myofascial Pain:

- history of pain in trapezius confirmed by clincal examination. The examiner will perform snapping palpation over the MFTP. If a localized, transient contraction is observed, the response is considered to be positive and the subject will be considered eligible for entry into the study.

Hyperthyroid Myopathy:

- clinical assessment in combination with a serum hormone profile of increased Free Thyroxine (FT4) and Triiodothyronine (T3) in the face of suppressed levels of Thyroid Stimulating Hormone (TSH).

Study Design

Observational Model: Case Control, Time Perspective: Cross-Sectional


Locations

Country Name City State
United States Mayo Clinic Rochester Minnesota

Sponsors (1)

Lead Sponsor Collaborator
Mayo Clinic

Country where clinical trial is conducted

United States, 

See also
  Status Clinical Trial Phase
Recruiting NCT04043052 - Mobile Technologies and Post-stroke Depression N/A
Recruiting NCT03869138 - Alternative Therapies for Improving Physical Function in Individuals With Stroke N/A
Completed NCT04034069 - Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial N/A
Completed NCT04101695 - Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects N/A
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Completed NCT00391378 - Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS) N/A
Recruiting NCT06204744 - Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial N/A
Active, not recruiting NCT06043167 - Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
Active, not recruiting NCT04535479 - Dry Needling for Spasticity in Stroke N/A
Completed NCT03985761 - Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke N/A
Recruiting NCT00859885 - International PFO Consortium N/A
Recruiting NCT06034119 - Effects of Voluntary Adjustments During Walking in Participants Post-stroke N/A
Completed NCT03622411 - Tablet-based Aphasia Therapy in the Chronic Phase N/A
Completed NCT01662960 - Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke N/A
Recruiting NCT05854485 - Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke N/A
Active, not recruiting NCT05520528 - Impact of Group Participation on Adults With Aphasia N/A
Completed NCT03366129 - Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
Completed NCT03281590 - Stroke and Cerebrovascular Diseases Registry
Completed NCT05805748 - Serious Game Therapy in Neglect Patients N/A
Recruiting NCT05993221 - Deconstructing Post Stroke Hemiparesis

External Links