Clinical Trials Logo

Clinical Trial Summary

This study investigates the effects of intensive, high dosage task and impairment based training of the hemiparetic hand, using haptic robots integrated with complex gaming and virtual reality simulations. There is a time-limited period of post-ischemic heightened neuronal plasticity during which intensive training may optimally affect the recovery of motor skills, indicating that the timing of rehabilitation is as important as the dosing. However, recent literature indicates a controversy regarding both the value of intensive, high dosage as well as the optimal timing for therapy in the first two months after stroke. This study is designed to empirically investigate this controversy. It is evident that providing additional, intensive therapy during the acute rehabilitation stay is more complicated to implement and difficult for patients to tolerate, than initiating it in the outpatient setting, immediately after discharge. The robotic/VR system is specifically designed to deliver hand and arm training when motion and strength are limited, using adaptive algorithms to drive individual finger movement, gain adaptation and workspace modification to increase finger and arm range of motion, and haptic and visual feedback from mirrored movements to reinforce motor networks in the lesioned hemisphere.


Clinical Trial Description

This study investigates the effects of high dosage task and impairment based training of the hemiparetic hand, using haptic robots integrated with complex gaming and virtual reality simulations on recovery and function of the hand, when the training is initiated within early period of heightened plasticity. The intervention uses two training systems. NJIT-RAVR consists of a data glove combined with the Haptic Master robot that provides tracking of movements in a 3D workspace and enables programmable haptic effects, such as variable anti-gravity support, springs and dampers, and various haptic objects. The NJIT-TrackGlove consists of a robotic hand exoskeleton to provide haptic effects or assistance and an instrumented glove for finger angle tracking, and an arm tracking system to track hand and arm position and orientation. Using programmable software and custom bracing we enable use of this system for patients with a broad set of impairments and functional abilities. A library of custom-designed impairment and task-based simulations that train arm transport and hand manipulation, together or separately will be used. Pilot data show that it is possible to integrate intensive, high-dosage, targeted hand therapy into the routine of an acute rehabilitation setting. The study integrates the behavioral, the kinematic/kinetic and neurophysiological aspects of recovery to determine: 1) whether early intensive training focusing on the hand will result in a more functional hemiparetic arm; (2) whether it is necessary to initiate intensive hand therapy during the very early inpatient rehabilitation phase or will comparable outcomes be achieved if the therapy is initiated right after discharge, in the outpatient period; and 3) whether the effect of the early intervention observed at 6 months post stroke can be predicted by the cortical reorganization evaluated immediately prior to the therapy. This study will fill critical gaps in the literature and make a significant advancement in the investigation of putative interventions for recovery of hand function in patients post-stroke. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03569059
Study type Interventional
Source New Jersey Institute of Technology
Contact Sergei V Adamovich, PhD
Phone 973-596-3413
Email sergei.adamovich@njit.edu
Status Recruiting
Phase N/A
Start date August 24, 2018
Completion date October 1, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT05378035 - DOAC in Chinese Patients With Atrial Fibrillation
Completed NCT03679637 - Tablet-based Aphasia Therapy in the Acute Phase After Stroke N/A
Completed NCT03574038 - Transcranial Direct Current Stimulation as a Neuroprotection in Acute Stroke N/A
Completed NCT03633422 - Evaluation of Stroke Patient Screening
Completed NCT04088578 - VNS-supplemented Motor Retraining After Stroke N/A
Withdrawn NCT04991038 - Clinical Investigation to Compare Safety and Efficacy of DAISE and Stent Retrievers for Thrombectomy In Acute Ischemic Stroke Patients N/A
Not yet recruiting NCT05534360 - Tenecteplase Treatment in Ischemic Stroke Registry
Not yet recruiting NCT04105322 - Effects of Kinesio Taping on Balance and Functional Performance in Stroke Patients N/A
Withdrawn NCT05786170 - ERILs Und SNILs Unter SOC N/A
Recruiting NCT03132558 - Contrast Induced Acute Kidney in Patients With Acute Stroke N/A
Completed NCT02893631 - Assessment of Hemostasis Disorders in rtPA-treated Patients Requiring Endovascular Treatment for Ischemic Stroke
Active, not recruiting NCT02274727 - Biomarker Signature of Stroke Aetiology Study: The BIOSIGNAL-Study
Completed NCT02225730 - Imaging Collaterals in Acute Stroke (iCAS)
Terminated NCT01705353 - The Role of HMGB-1 in Chronic Stroke N/A
Active, not recruiting NCT01581502 - SAMURAI-NVAF Study: Anticoagulant Therapy for Japanese Stroke Patients With Nonvalvular Atrial Fibrillation (NVAF) N/A
Completed NCT01182818 - Fabry and Stroke Epidemiological Protocol (FASEP): Risk Factors In Ischemic Stroke Patients With Fabry Disease N/A
Completed NCT00761982 - Autologous Bone Marrow Stem Cells in Middle Cerebral Artery Acute Stroke Treatment. Phase 1/Phase 2
Completed NCT00535197 - Autologous Bone Marrow Stem Cells in Ischemic Stroke. Phase 1/Phase 2
Terminated NCT00132509 - FRALYSE Trial: Comparison of the Classical Rt-PA Procedure With a Longer Procedure in Acute Ischemic Stroke Phase 2
Recruiting NCT05760326 - Diagnostic and Prognostic Role of Clot Analysis in Stroke Patients